Skerrett-Byrne David A, Pepin Anne-Sophie, Laurent Katharina, Beckers Johannes, Schneider Robert, Hrabě de Angelis Martin, Teperino Raffaele
Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.
Mol Nutr Food Res. 2025 Sep 6:e70261. doi: 10.1002/mnfr.70261.
Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained. We examine how these epigenetic signals influence pregnancy, placental development, and ultimately, metabolic trajectories in progeny. To extend published work, we sourced publicly available diet-induced sperm epigenome datasets and provide new potential connections of these changes to genes governing placental development, vascularization and size using the International Mouse Phenotyping Consortium data. Moreover, we further interrogate these overlaps with intricate in-silico analyses to examine their potential consequences. To foster meaningful interactions with these findings, we have developed a web application for ease (ShinySpermPlacenta). Collectively, these findings support a biparental model of preconception care and position the sperm epigenome as a promising tractable biomarker platform for personalized paternal nutrition counselling aimed at improving fertility and reducing intergenerational metabolic disease risk.
早期生活编程是终身代谢健康的主要决定因素,但目前的预防策略几乎完全集中在母体因素上。新出现的实验和临床前数据表明,父亲在受孕前的饮食,尤其是高脂肪摄入,也会影响后代的生理发育。在这里,我们综合了最新的证据,说明此类饮食如何在两个不同的易损期重塑精子表观基因组:(i)通过DNA甲基化和组蛋白修饰影响睾丸精子发生,以及(ii)在睾丸后附睾成熟过程中,精子选择性获得小非编码RNA。我们研究了这些表观遗传信号如何影响妊娠、胎盘发育,并最终影响后代的代谢轨迹。为了扩展已发表的研究成果,我们获取了公开可用的饮食诱导精子表观基因组数据集,并利用国际小鼠表型分析联盟的数据,提供了这些变化与控制胎盘发育、血管生成和大小的基因之间的新潜在联系。此外,我们通过复杂的计算机模拟分析进一步探究这些重叠部分,以研究其潜在后果。为了促进与这些研究结果的有意义互动,我们开发了一个便于使用的网络应用程序(ShinySpermPlacenta)。总的来说,这些发现支持了孕前护理的双亲模型,并将精子表观基因组定位为一个有前景的、易于处理的生物标志物平台,用于个性化的父亲营养咨询,旨在提高生育能力并降低代际代谢疾病风险。