Bueno Batista Marcelo, Richardson Jake, Webster Michael W, Ghilarov Dmitry, Peters John W, Lawson David M, Dixon Ray
Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
Department of Cell and Developmental Biology, Bioimaging, John Innes Centre, Norwich, UK.
FEBS J. 2025 Sep 7. doi: 10.1111/febs.70253.
Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability. The nitrogen fixation machinery is thereby only activated under strictly favorable conditions, enabling diazotrophs to thrive in competitive environments. While genetic and biochemical studies have enlightened our understanding of how NifL represses NifA, the molecular basis of NifA sequestration by NifL depends on structural information on their interaction. Here, we present mechanistic insights into how nitrogen fixation is regulated by combining biochemical and genetic approaches with a low-resolution cryo-electron microscopy (cryo-EM) map of the oxidized NifL-NifA complex. Our findings define the interaction surface between NifL and NifA and reveal how this interaction can be manipulated to generate bacterial strains with increased nitrogen fixation rates able to secrete surplus nitrogen outside the cell, a crucial step in engineering improved nitrogen delivery to crop plants.
了解调控固氮的分子基础对于改造固氮细菌至关重要,这些细菌能够满足作物对固定氮的需求,从而减少我们对合成氮肥的依赖。在棕色固氮菌以及变形菌门的许多其他成员中,由抗激活蛋白(NifL)和Nif特异性转录激活因子(NifA)组成的双组分系统控制着nif基因的表达,这些基因编码固氮机制。NifL-NifA系统进化出了整合多种环境信号的能力,如氧气、氮和碳的可利用性。因此,固氮机制仅在严格有利的条件下被激活,使固氮菌能够在竞争环境中茁壮成长。虽然遗传学和生物化学研究增进了我们对NifL如何抑制NifA的理解,但NifL隔离NifA的分子基础取决于它们相互作用的结构信息。在这里,我们通过将生化和遗传方法与氧化型NifL-NifA复合物的低分辨率冷冻电子显微镜(cryo-EM)图谱相结合,对固氮调控机制进行了深入研究。我们的研究结果确定了NifL和NifA之间的相互作用表面,并揭示了如何操纵这种相互作用来产生固氮率提高的细菌菌株,这些菌株能够将多余的氮分泌到细胞外,这是改造向作物更好地输送氮的关键一步。