Meng Guoliang, Li Jiajia, Cao Yao, Li Fan, Liu MengQian, Li Rongchun, Dong Caihong
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.
Yunnan Junshijie Biotechnology Ltd., Kunming 650200, Yunnan, China Yunnan Junshijie Biotechnology Ltd. Kunming China.
IMA Fungus. 2025 Aug 28;16:e161411. doi: 10.3897/imafungus.16.161411. eCollection 2025.
is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of . Comparative genomic analysis revealed a genome size difference of 1.17 Mb (30.87 vs. 32.04 Mb), primarily attributed to transposable element (TE) expansion in strain PP85. Genome structural variations were largely driven by TEs, particularly LTR retrotransposons. DNA transposons were also involved in structural rearrangement of secondary metabolite biosynthetic gene clusters, impacting their organization and transcriptional profiles. Functional annotation identified 187 PP78-specific and 236 PP85-specific genes, with the latter enriched in TE-related and putative virulence factors. displays genomic signatures of both ECM symbiosis (reduced lignocellulose-degrading enzymes) and saprotroph (expanded glycoside hydrolase 31 and sugar transporters), supporting a facultative ECM lifestyle. The expansion of non-ribosomal peptide synthetase and polyketide synthase pathways, alongside contraction of terpenoid clusters typical of ECM fungi, further indicated its adaptation to saprotroph. These findings highlight the role of TEs in driving genome plasticity, metabolic diversity, and nuclear divergence in , providing valuable genomic resources for this species.
是一种广泛食用的食用菌,也是目前唯一进行工业化栽培的物种。尽管其具有经济重要性,但其营养策略和基因组适应性仍不明确。在此,我们展示了该物种两个有性兼容单核体(PP78和PP85)的高质量染色体水平基因组组装。比较基因组分析揭示了1.17 Mb的基因组大小差异(30.87 vs. 32.04 Mb),主要归因于PP85菌株中转座元件(TE)的扩增。基因组结构变异在很大程度上由TE驱动,特别是LTR反转录转座子。DNA转座子也参与了次生代谢物生物合成基因簇的结构重排,影响其组织和转录谱。功能注释鉴定出187个PP78特异性基因和236个PP85特异性基因,后者富集于与TE相关和假定的毒力因子。该物种显示出外生菌根共生(减少的木质纤维素降解酶)和腐生菌(扩展的糖苷水解酶31和糖转运蛋白)的基因组特征,支持一种兼性外生菌根生活方式。非核糖体肽合成酶和聚酮合酶途径的扩增,以及外生菌根真菌典型萜类簇的收缩,进一步表明其对腐生菌的适应性。这些发现突出了TE在驱动该物种基因组可塑性、代谢多样性和核分化中的作用,为该物种提供了有价值的基因组资源。