Wang Shangjun, Wang Xu, Adeniji Oluwamosope D, Batchelor William D, Wang Yifen, Blersch David, Higgins Brendan T, Liles Mark R, Luo Wei, Chen Charles Y, Feng Yucheng, Wang Yi
Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA.
Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA.
Biotechnol Bioeng. 2025 Sep 9. doi: 10.1002/bit.70064.
Ensuring sufficient crop yields in an era of rapid population growth and limited arable land requires innovative strategies to enhance plant resilience and sustain, or even improve, growth and productivity despite environmental stress. Besides symbiotic nitrogen fixation, rhizobia may play a central role in sustainable agriculture by alleviating the detrimental effects of ethylene-a key stress hormone in plants-especially under conditions like drought through the deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). In this study, we focused on genetically engineering a new Bradyrhizobium sp. isolate (Strain 9) from peanut root nodules to enhance its ACC deaminase activity. First, we developed a sacB-based genome-engineering tool and used it to knock out the ACC deaminase gene (acdS), confirming that its disruption severely diminished the strain's capacity to degrade ACC. Subsequently, we constructed an acdS-overexpressing strain by integrating a strong promoter and an optimized ribosome binding site upstream of acdS, achieving a five-fold increase in ACC deaminase activity relative to the wild-type. Peanut inoculation experiments demonstrated that both the acdS knockout and overexpression mutants effectively nodulated roots without impairing plant growth and nitrogen fixation, indicating that these modifications did not compromise symbiosis. Overall, this study highlights the utility of sacB-mediated counter-selection for precise genome editing in Bradyrhizobium and underscores the potential of enhanced ACC deaminase activity to improve plant growth under stress conditions. These findings pave the way for developing next-generation bioinoculants with superior ethylene mitigation capabilities, contributing to more productive and sustainable crop systems.
在人口快速增长和耕地有限的时代,确保足够的作物产量需要创新策略,以增强植物的恢复力,并在环境压力下维持甚至提高生长和生产力。除了共生固氮作用外,根瘤菌在可持续农业中可能发挥核心作用,它可以减轻乙烯(植物中的一种关键胁迫激素)的有害影响,特别是在干旱等条件下,通过脱氨1-氨基环丙烷-1-羧酸(ACC)来实现。在本研究中,我们专注于对从花生根瘤中分离出的一种新的慢生根瘤菌菌株(菌株9)进行基因工程改造,以增强其ACC脱氨酶活性。首先,我们开发了一种基于sacB的基因组工程工具,并利用它敲除ACC脱氨酶基因(acdS),证实其破坏严重降低了菌株降解ACC的能力。随后,我们通过在acdS上游整合一个强启动子和一个优化的核糖体结合位点构建了一个acdS过表达菌株,相对于野生型,ACC脱氨酶活性提高了五倍。花生接种实验表明,acdS敲除和过表达突变体都能有效地在根上结瘤,而不会损害植物生长和固氮,这表明这些修饰不会损害共生关系。总体而言,本研究突出了sacB介导的反向选择在慢生根瘤菌精确基因组编辑中的实用性,并强调了增强ACC脱氨酶活性在胁迫条件下改善植物生长的潜力。这些发现为开发具有卓越乙烯缓解能力的下一代生物肥料铺平了道路,有助于建立更高产和可持续的作物系统。