Castelfranco Ann M, Alcami Pepe
Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg - Martinsried, Germany.
Commun Biol. 2025 Sep 9;8(1):1341. doi: 10.1038/s42003-025-08583-x.
The internal resistance of axons to ionic current flow determines action potential conduction velocity. Although mitochondria support axonal function, axons have been modeled as organelle-free cables, and mitochondrial impact on conduction velocity, specifically by increasing internal resistance, remains understudied. We combine computational modeling and electron microscopy of forebrain premotor axons controlling birdsong production. Modeling shows that when the propagating action potential in an unmyelinated axon encounters a mitochondrion, conduction velocity decreases, delaying the action potential by tenths of microseconds to microseconds, an effect that is stronger in small axons. Axonal mitochondria thereby induce conduction inhomogeneities, accumulating total delays of tenths of milliseconds to ~ a millisecond over 3 millimeters-long axons, in the range of the temporal precision of these neurons. Thus, by partially occupying the axoplasm, mitochondria constrain information processing in vertebrate small-diameter axons. Our model should permit future investigations on the impact of mitochondrial axonal plasticity on action potential temporal coding.
轴突对离子电流流动的内阻决定了动作电位的传导速度。尽管线粒体支持轴突功能,但轴突一直被建模为无细胞器的电缆,而线粒体对传导速度的影响,特别是通过增加内阻的影响,仍未得到充分研究。我们结合了控制鸟鸣产生的前脑运动前轴突的计算建模和电子显微镜研究。建模显示,当无髓鞘轴突中传播的动作电位遇到线粒体时,传导速度会降低,将动作电位延迟十分之几微秒到几微秒,这种效应在小轴突中更强。轴突线粒体从而诱导传导不均匀性,在3毫米长的轴突上累积十分之几毫秒到约1毫秒的总延迟,处于这些神经元的时间精度范围内。因此,通过部分占据轴浆,线粒体限制了脊椎动物小直径轴突中的信息处理。我们的模型应该有助于未来对线粒体轴突可塑性对动作电位时间编码影响的研究。