Bura Neha, Botella Pablo, Popescu Catalin, Alabarse Frederico, Vaitheeswaran Ganapathy, Muñoz Alfonso, Kennedy Brendan J, Rodrigo Ramon Jose Luis, Sanchez-Martin Josu, Errandonea Daniel
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.
CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallès, 08290 Barcelona, Spain.
J Phys Chem C Nanomater Interfaces. 2025 Aug 25;129(35):15865-15877. doi: 10.1021/acs.jpcc.5c04262. eCollection 2025 Sep 4.
The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.6 and 7.4 GPa for RbReO and KReO, respectively. The transition involves a relative volume decrease. On the other hand, AgReO underwent a phase transition to the M-fergusonite structure (space group 2/) at 13.6 GPa. In this case there is no appreciable volume discontinuity. The room-temperature pressure-volume equation of state for the three studied perrhenates was estimated using a second-order Birch-Murnaghan equation of state. The results for the low-pressure phase are confirmed by density-functional theory calculations. The analysis of the bulk modulus shows that the compressibility of the compounds decreases following the sequence RbReO > KReO > AgReO, which is related to the compressibility of the RbO, KO, and AgO bidisphenoid units. Density-functional theory also offers valuable insights into the elastic constants. Despite giving a good description for the low-pressure phase in the three compounds, density-functional theory cannot catch the structural phase transition observed in experiments. Reasons for it are discussed in the manuscript.
利用同步辐射粉末X射线衍射和密度泛函理论研究了压力对白钨矿型高铼酸盐晶体结构的影响。在环境条件下,所研究的材料AgReO、KReO和RbReO呈现出由空间群4/描述的四方白钨矿型晶体结构。在压缩过程中,RbReO和KReO分别在1.6 GPa和7.4 GPa时观察到从白钨矿到M'-弗格森矿(空间群2/)的转变。该转变涉及相对体积减小。另一方面,AgReO在13.6 GPa时发生向M-弗格森矿结构(空间群2/)的相变。在这种情况下,没有明显的体积不连续性。使用二阶Birch-Murnaghan状态方程估计了三种研究的高铼酸盐的室温压力-体积状态方程。密度泛函理论计算证实了低压相的结果。体模量分析表明,化合物的压缩性按RbReO>KReO>AgReO的顺序降低,这与RbO、KO和AgO双棱面体单元的压缩性有关。密度泛函理论也为弹性常数提供了有价值的见解。尽管对三种化合物的低压相给出了很好的描述,但密度泛函理论无法捕捉到实验中观察到的结构相变。手稿中讨论了其原因。