Liu Ze-Yu, Nie Qing-Bin, Han Bao-Liang, Gupta Rakesh Kumar, Dong Guang-Lei, Luo Geng-Geng, Yang Zhi-Lin, Sun Di
Department of Physics, Xiamen University, Xiamen 361005, China.
Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
Chem Soc Rev. 2025 Oct 1;54(19):9092-9115. doi: 10.1039/d5cs00383k.
Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission. We begin by outlining how time-resolved spectroscopic techniques-including femtosecond and nanosecond transient absorption (fs-/ns-TA) and time-resolved fluorescence spectroscopy (TRFS)-coupled with TD-DFT modeling, facilitate the probing of relaxation dynamics, photophysical behaviors, and the underlying electronic structures of CMNCs. We then highlight how these advanced techniques reveal the role of coherent oscillations and excited-state relaxation in dictating PL efficiency and characteristics, while delving into strategies such as ligand rigidification, metal doping, kernel engineering, and induced structural transformations that suppress non-radiative decay pathways and thereby enhance NIR PL quantum yield (PLQY) in the NIR region. Finally, we conclude by discussing the current challenges and future opportunities in deepening our understanding of optical properties and excited-state dynamics of NIR-emitting CMNCs, underscoring the imperative for advanced experimental methodologies and rational design strategies to optimize their functionalities for emerging applications.
了解原子精确的硬币金属纳米团簇(CMNCs)的激发态动力学对于阐明其光致发光(PL)机制和合理调节发射特性至关重要,特别是在近红外(NIR)区域,基于CMNCs的纳米材料在生物医学和光电子应用方面具有巨大潜力。本综述系统全面地介绍了利用时间分辨光谱和含时密度泛函理论(TD-DFT)计算的协同整合,在研究具有原子精确性的近红外发射CMNCs的激发态动力学和PL机制方面的最新进展。与以往对CMNCs性质进行广泛综述的文献不同,本综述特别关注内在因素,强调分子振动特征和电子结构调制是近红外发射的关键决定因素。我们首先概述了时间分辨光谱技术,包括飞秒和纳秒瞬态吸收(fs-/ns-TA)以及时间分辨荧光光谱(TRFS),如何与TD-DFT建模相结合,有助于探测CMNCs的弛豫动力学、光物理行为和潜在的电子结构。然后,我们强调这些先进技术如何揭示相干振荡和激发态弛豫在决定PL效率和特性方面的作用,同时深入探讨诸如配体刚性化、金属掺杂、内核工程和诱导结构转变等策略,这些策略可以抑制非辐射衰变途径,从而提高近红外区域的近红外PL量子产率(PLQY)。最后,我们通过讨论在深化对近红外发射CMNCs的光学性质和激发态动力学的理解方面当前面临的挑战和未来机遇来得出结论,强调先进实验方法和合理设计策略对于优化其在新兴应用中的功能的必要性。