Lewis Ashley Adanna, Bacong Adrian Matias, Palaniappan Latha, Hernandez-Boussard Tina
Department of Biomedical Data Science Stanford University Stanford CA USA.
Department of Medicine, Division of Cardiovascular Medicine Stanford University School of Medicine Palo Alto CA USA.
J Am Heart Assoc. 2025 Sep 16;14(18):e041549. doi: 10.1161/JAHA.125.041549. Epub 2025 Sep 11.
In 2023, the American Heart Association PREVENT (Predicting Risk of Cardiovascular Disease Events) equations were introduced as a tool to improve cardiovascular disease (CVD) risk prediction. This study tests their performance in a diverse socioeconomic cohort.
We analyzed All of Us participants aged 30 to 79 years without baseline CVD who had required PREVENT input data over a 5.4-year follow-up. Discrimination was assessed using Harrell's C-statistic, with calibration by comparing predicted and observed 5-year CVD rates across 10-year risk deciles. Mean data are ±SD.
We examined 9010 individuals (mean age, 63.0±11.0 years; 45.5% male). Racial and ethnic composition was 61.7% non-Hispanic White, 17.2% non-Hispanic Black, 4.5% multiracial/other, 1.3% non-Hispanic Asian, and 11.2% Hispanic or Latino. The "other" race/ethnic category reflects participants who self-identified as "other" in response to the, "Which category describes you?" item in the Basics survey. Over a mean follow-up of 3.6±1.8 years, 9.0% experienced a cardiovascular event. The mean 10-year predicted risks were 0.23±0.17 for total CVD, 0.13±0.10 for atherosclerotic CVD (ASCVD), and 0.19±0.17 for heart failure. The predicted-to-observed rate ratios were 5.3 for CVD and 3.3 for ASCVD. The C statistic for the overall sample was 0.732 (95% CI, 0.718-0.752) for CVD, 0.716 (95% CI, 0.698-0.741) for ASCVD, and 0.777 (95% CI, 0.757-0.800) for heart failure.
The PREVENT equations showed strong discrimination across all strata in this national cohort. Overprediction of CVD events likely reflects baseline differences in comorbidity burden between the PREVENT development cohort and this All of Us cohort, particularly due to the exclusion of individuals missing estimated glomerular filtration rate, a variable not routinely collected and likely missing, not at random. Strong discrimination supports potential clinical utility, though further work is needed to improve calibration in this population.
2023年,美国心脏协会的PREVENT(预测心血管疾病事件风险)方程作为一种改善心血管疾病(CVD)风险预测的工具被引入。本研究在一个社会经济背景多样的队列中测试了其性能。
我们分析了年龄在30至79岁之间、无基线CVD且在5.4年随访期间需要PREVENT输入数据的“我们所有人”研究参与者。使用Harrell C统计量评估区分度,并通过比较10年风险十分位数中预测的和观察到的5年CVD发生率进行校准。均值数据为±标准差。
我们研究了9010名个体(平均年龄63.0±11.0岁;45.5%为男性)。种族和族裔构成如下:61.7%为非西班牙裔白人,17.2%为非西班牙裔黑人,4.5%为多种族/其他,1.3%为非西班牙裔亚洲人,11.2%为西班牙裔或拉丁裔。“其他”种族/族裔类别反映了在基础调查中回答“哪个类别描述你?”这一问题时自我认定为“其他”的参与者。在平均3.6±1.8年的随访中,9.0%的人发生了心血管事件。总的CVD的平均10年预测风险为0.23±0.17,动脉粥样硬化性CVD(ASCVD)为0.13±0.10,心力衰竭为0.19±0.17。CVD的预测与观察发生率之比为5.3,ASCVD为3.3。整个样本的C统计量,CVD为0.732(95%CI,0.718 - 0.752),ASCVD为0.716(95%CI,0.698 - 0.741),心力衰竭为0.777(95%CI,0.757 - 0.800)。
PREVENT方程在这个全国性队列的所有分层中都显示出很强的区分度。CVD事件的过度预测可能反映了PREVENT开发队列与“我们所有人”队列之间合并症负担的基线差异,特别是由于排除了估算肾小球滤过率缺失的个体,这是一个未常规收集且可能非随机缺失的变量。尽管在该人群中还需要进一步工作来改善校准,但很强的区分度支持了潜在的临床实用性。