Suppr超能文献

利用有效的机器学习原子间势实现锂离子电池中固体电解质界面材料的精确建模。

Enabling accurate modelling of materials for a solid electrolyte interphase in lithium-ion batteries using effective machine learning interatomic potentials.

作者信息

Li Wen-Qing, Wu Gang, Arce-Ramos Juan Manuel, Lau Yang Hao, Ng Man-Fai

机构信息

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore.

出版信息

Mater Horiz. 2025 Sep 12. doi: 10.1039/d5mh01343g.

Abstract

Accurate modelling of the structural and dynamic properties of the solid electrolyte interphase (SEI) in lithium-ion batteries remains a longstanding challenge due to the high complexity of the SEI structure and the lack of structural information. Atomistic simulations using molecular dynamics (MD) can provide insights into the structure of the SEI but require large models and accurate interatomic potentials; however, existing computational tools struggle to evaluate these potentials in mixed-material systems efficiently and reliably. Here, we demonstrate the effectiveness of machine learning interatomic potentials (MLIPs) defined using amorphous structures as reference data, specifically the moment tensor potential (MTP), combined with density functional theory (DFT) calculations and active learning loops that enable rapid sampling of MD trajectories. For SEI relevant materials (, LiCO, bulk Li, LiPF, and LiEDC), our trained MTP models accurately capture the key structural properties (, lattice parameters, elastic constants, or phonon spectra). For the dynamical properties of monoclinic LiCO and amorphous LiEDC, the models are validated against previous theoretical predictions in the literature. Particularly, we illustrate the finite temperature effects on computing energy barriers. The determined mechanism of dominant diffusion carriers (Li vacancy, interstitial Li, and Li Frenkel pair) in LiCO is highly consistent with DFT calculations. Furthermore, we show that the generated training datasets can be applied to train graph-neural-network (GNN)-based interatomic potentials that can further improve accuracy. The developed machine learning workflow provides a scalable approach for SEI modelling, enabling simulations at larger time and length scales to tackle the limitations of conventional DFT methods.

摘要

由于固体电解质界面(SEI)结构高度复杂且缺乏结构信息,对锂离子电池中SEI的结构和动态特性进行精确建模仍然是一个长期挑战。使用分子动力学(MD)的原子模拟可以深入了解SEI的结构,但需要大型模型和精确的原子间势;然而,现有的计算工具难以在混合材料系统中高效且可靠地评估这些势。在这里,我们展示了使用非晶结构作为参考数据定义的机器学习原子间势(MLIPs)的有效性,特别是矩张量势(MTP),结合密度泛函理论(DFT)计算和主动学习循环,能够快速采样MD轨迹。对于与SEI相关的材料(如LiCO、块状Li、LiPF和LiEDC),我们训练的MTP模型准确地捕捉了关键的结构特性(如晶格参数、弹性常数或声子谱)。对于单斜LiCO和非晶LiEDC的动态特性,该模型根据文献中先前的理论预测进行了验证。特别是,我们说明了有限温度对计算能垒的影响。在LiCO中确定的主要扩散载流子(Li空位、间隙Li和Li弗伦克尔对)的机制与DFT计算高度一致。此外,我们表明生成的训练数据集可用于训练基于图神经网络(GNN)的原子间势,从而进一步提高准确性。所开发的机器学习工作流程为SEI建模提供了一种可扩展的方法,能够在更大的时间和长度尺度上进行模拟,以克服传统DFT方法的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验