Kao Kaily, Alocilja Evangelyn C
Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI 48824, USA.
Sensors (Basel). 2025 Aug 26;25(17):5293. doi: 10.3390/s25175293.
Antimicrobial resistance (AMR) is a significant global threat and is driven by the overuse of antibiotics in both clinical and agricultural settings. This issue is further complicated by the lack of rapid surveillance tools to detect resistant bacteria in clinical, environmental, and food systems. Of particular concern is the rise in resistance to carbapenems, a critical class of beta-lactam antibiotics. Rapid detection methods are necessary for prevention and surveillance effort. This study utilized a gold nanoparticle-based plasmonic biosensor to detect three CR genes: , , and . Optical signals were analyzed using both a spectrophotometer and a smartphone app that quantified visual color changes using RGB values. This app, combined with a simple boiling method for DNA extraction and a portable thermal cycler, was used to evaluate the biosensor's potential for POC use. Advantages of the portable bacterial detection device include real time monitoring for immediate decision-making in critical situations, field and on-site testing in resource-limited settings without needing to transport samples to a centralized lab, minimal training required, automatic data analysis, storage and sharing, and reduced operational cost. Bacteria were inoculated into sterile water, river water, and turkey rinse water samples to determine the biosensor's success in detecting target genes from sample matrices. Magnetic nanoparticles were used to capture and concentrate bacteria to avoid time-consuming cultivation and separation steps. The biosensor successfully detected the target CR genes in all tested samples using three gene-specific DNA probes. Target genes were detected with a limit of detection of 2.5 ng/L or less, corresponding to ~10 CFU/mL of bacteria.
抗菌药物耐药性(AMR)是一个重大的全球威胁,其产生是由临床和农业环境中抗生素的过度使用所驱动的。由于缺乏快速监测工具来检测临床、环境和食品系统中的耐药细菌,这个问题变得更加复杂。特别令人担忧的是对碳青霉烯类抗生素(一类关键的β-内酰胺抗生素)的耐药性上升。快速检测方法对于预防和监测工作是必要的。本研究利用基于金纳米颗粒的等离子体生物传感器来检测三种碳青霉烯类耐药(CR)基因: 、 和 。使用分光光度计和一款智能手机应用程序分析光信号,该应用程序使用RGB值对视觉颜色变化进行量化。这款应用程序与一种简单的DNA提取煮沸方法以及一台便携式热循环仪相结合,用于评估该生物传感器在即时检测(POC)方面的潜力。这种便携式细菌检测设备的优点包括实时监测以便在危急情况下立即做出决策、在资源有限的环境中进行现场和实地测试而无需将样本运送到集中实验室、所需培训极少、自动数据分析、存储和共享以及降低运营成本。将细菌接种到无菌水、河水和火鸡冲洗水样本中,以确定该生物传感器从样本基质中检测目标基因的成功率。使用磁性纳米颗粒捕获和浓缩细菌,以避免耗时的培养和分离步骤。该生物传感器使用三种基因特异性DNA探针在所有测试样本中成功检测到了目标CR基因。检测到目标基因的检测限为2.5 ng/L或更低,对应于约10 CFU/mL的细菌。