Negreiros Waldemiro José Assis Gomes, Rodrigues Jean da Silva, Ribeiro Maurício Maia, Silva Douglas Santos, Junio Raí Felipe Pereira, Seruffo Marcos Cesar da Rocha, Monteiro Sergio Neves, Corrêa Alessandro de Castro
Electrical Engineering Program, Federal University of Pará-UFPA, Rua Augusto Corrêa, 01, Guamá CEP 66075-110, PA, Brazil.
Materials Engineering Program, Federal Institute of Education, Science and Technology of Pará-IFPA, Avenida Almirante Barroso, 1155, Marco, Belém CEP 66093-020, PA, Brazil.
Sensors (Basel). 2025 Sep 2;25(17):5447. doi: 10.3390/s25175447.
The optimization of thermal performance in buildings is essential for sustainable urban development, yet the high cost and complexity of traditional thermal conductivity measurement methods limit broader research and educational applications. This study developed and validated a low-cost, replicable prototype that determines the thermal conductivity of roof tiles and composites using the Lee Disc method automated with Arduino-based acquisition. Standardized samples of ceramic, fiber-cement, galvanized steel, and steel coated with a castor oil-based polyurethane composite reinforced with miriti fiber () were analyzed. The experimental setup incorporated integrated digital thermocouples and strict thermal insulation procedures to ensure measurement precision and reproducibility. Results showed that applying the biocompatible composite layer to metal tiles reduced thermal conductivity by up to 53%, reaching values as low as 0.2004 W·m·K-well below those of ceramic (0.4290 W·m·K) and fiber-cement (0.3095 W·m·K) tiles. The system demonstrated high accuracy (coefficient of variation < 5%) and operational stability across all replicates. These findings confirm the feasibility of open-source, low-cost instrumentation for advanced thermal characterization of building materials. The approach expands access to experimental research, promotes sustainable insulation technologies, and offers practical applications for both scientific studies and engineering education in resource-limited environments.
建筑热性能的优化对城市可持续发展至关重要,但传统热导率测量方法成本高且复杂,限制了更广泛的研究和教育应用。本研究开发并验证了一种低成本、可复制的原型,该原型使用基于Arduino采集自动化的李圆盘法来测定屋顶瓦片和复合材料的热导率。分析了陶瓷、纤维水泥、镀锌钢以及涂有以miriti纤维()增强的蓖麻油基聚氨酯复合材料的钢的标准化样品。实验装置采用了集成数字热电偶和严格的隔热程序,以确保测量精度和可重复性。结果表明,在金属瓦上涂覆生物相容性复合层可使热导率降低多达53%,达到低至0.2004W·m·K的值,远低于陶瓷(0.4290W·m·K)和纤维水泥(0.3095W·m·K)瓦片的热导率。该系统在所有重复实验中都表现出高精度(变异系数<5%)和操作稳定性。这些发现证实了用于建筑材料高级热特性表征的开源、低成本仪器的可行性。该方法扩大了实验研究的可及性,促进了可持续隔热技术的发展,并为资源有限环境下的科学研究和工程教育提供了实际应用。