Albrecht Claire S, Israels Brett, Maurer Jack, von Hippel Peter H, Marcus Andrew H
Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403.
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403.
bioRxiv. 2025 Sep 6:2025.09.05.674579. doi: 10.1101/2025.09.05.674579.
Single-stranded DNA binding protein (gp32) serves as the central regulatory component of the multi-subunit T4 bacteriophage DNA replication system by coordinating the system's three functional sub-assemblies, resulting in phage DNA synthesis in T4-infected cells at the high speeds (~1,000 nts s) and the high fidelity (< 1 error per 10 nts) required for genomic function within this cellular eco-system. Gp32 proteins continuously bind to, slide as cooperatively-linked clusters on, and un-bind from transiently exposed single-stranded (ss) DNA templates to carry out their coordinating functions, as well as to protect genomic sequences from nuclease activity and block the formation of interfering secondary structures. The N-terminal domains (NTDs) of gp32 mediate cooperative interactions within ssb clusters, but the roles of the disordered C-terminal domains (CTD) in the nucleation of gp32-ssDNA filaments at ss-dsDNA junctions are less well understood. We here present microsecond-resolved single-molecule Förster resonance energy transfer studies of the initial steps of gp32 assembly on short oligo-deoxythymidine lattices of varying lattice length and polarity near model ss-dsDNA junctions. These data are analyzed to define the molecular steps and related free energy surfaces involved in initiating gp32 cluster formation, which show that the nucleation mechanisms and regulatory interactions driven by gp32 proteins at ss-dsDNA junctions are significantly directed by lattice polarity. We propose a model for the role of the CTDs in orienting gp32 monomers at lattice positions close to ss-dsDNA junctions that suggests how intrinsically disordered CTD domains might facilitate and control non-base-sequence-specific binding in both the nucleation and the dissociation of the gp32-ssDNA filaments involved in phage DNA replication and related processes.
单链DNA结合蛋白(gp32)是多亚基T4噬菌体DNA复制系统的核心调节成分,它通过协调该系统的三个功能子组件,在T4感染的细胞中实现噬菌体DNA的高速(约1000个核苷酸/秒)和高保真(每10个核苷酸<1个错误)合成,以满足该细胞生态系统内基因组功能的要求。Gp32蛋白持续结合、以协同连接簇的形式在短暂暴露的单链(ss)DNA模板上滑动并与之解离,以执行其协调功能,同时保护基因组序列免受核酸酶活性的影响,并阻止干扰性二级结构的形成。gp32的N端结构域(NTDs)介导了单链结合蛋白簇内的协同相互作用,但无序的C端结构域(CTD)在ss-dsDNA连接处gp32-ssDNA细丝成核中的作用尚不清楚。我们在此展示了微秒级分辨的单分子Förster共振能量转移研究,该研究针对在模型ss-dsDNA连接处附近不同晶格长度和极性的短寡聚脱氧胸苷晶格上gp32组装的初始步骤。对这些数据进行分析以确定启动gp32簇形成所涉及的分子步骤和相关自由能表面,结果表明,gp32蛋白在ss-dsDNA连接处驱动的成核机制和调节相互作用受到晶格极性的显著影响。我们提出了一个关于CTD在将gp32单体定向到接近ss-dsDNA连接处晶格位置中的作用的模型,该模型表明内在无序的CTD结构域可能如何促进和控制噬菌体DNA复制及相关过程中涉及的gp32-ssDNA细丝成核和解离过程中的非碱基序列特异性结合。