Röck Eva, Tsokkou Demetra, Hunger Basil, Horn Maximilian M, Zokaei Sepideh, Kroon Renee, Asatryan Jesika, Martín Jaime, Müller Christian, Kemerink Martijn, Banerji Natalie
Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Switzerland.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
Mater Horiz. 2025 Sep 16. doi: 10.1039/d5mh00620a.
Scalable organic electronic devices necessitate effective charge transport over long distances. We assess here the conductivity and its distance-resilience in doped polythiophene films with alkyl and oligoether side chains. We find that the polymers with oligoether side chains retain 80-90% of the conductivity over five orders of magnitude in distance (from tens of nanometers to millimeters), when doped with 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (FTCNQ). For P(g2T-T) co-processed with FTCNQ, this leads to an over 100 times enhanced long-range conductivity (43 S cm) compared to doped poly(3-hexylthiophene) (P3HT, 0.2 S cm). Optimization of the oligoether side chain length and doping protocol pushes the conductivity to 330 S cm. Kinetic Monte Carlo simulations of nanoscale terahertz conductivity data reveal that the local mobility of the doped P(g2T-T):FTCNQ film benefits from a higher dielectric constant (reduced Coulomb binding to the ionized dopant) and from lower energetic disorder. Those benefits persist on the macroscopic scale, while spatial charge confinement and a lack of connectivity hinder the long-range transport of moderately doped P3HT:FTCNQ. However, strongly doping P3HT using magic blue leads to enhanced conductivity with distance-resilience >80%. The distance-resilience is generalized for different polymer:dopant systems once a highly conductive regime (>30 S cm) is reached. This highlights an effective strategy to overcome limitations in terms of electrostatic binding and multi-scale polymer ordering, enhancing both the short-range and the long-range conductivity of doped conjugated polymers.
可扩展的有机电子器件需要在长距离上实现有效的电荷传输。我们在此评估了具有烷基和低聚醚侧链的掺杂聚噻吩薄膜的电导率及其距离弹性。我们发现,当用2,3,5,6-四氟-四氰基喹二甲烷(FTCNQ)掺杂时,具有低聚醚侧链的聚合物在五个数量级的距离(从几十纳米到毫米)内保持80-90%的电导率。对于与FTCNQ共处理的P(g2T-T),这导致其长程电导率(43 S/cm)比掺杂的聚(3-己基噻吩)(P3HT,0.2 S/cm)提高了100倍以上。低聚醚侧链长度和掺杂方案的优化将电导率提高到330 S/cm。纳米级太赫兹电导率数据的动力学蒙特卡罗模拟表明,掺杂的P(g2T-T):FTCNQ薄膜的局部迁移率受益于更高的介电常数(减少与电离掺杂剂的库仑束缚)和更低的能量无序度。这些优势在宏观尺度上仍然存在,而空间电荷限制和缺乏连通性阻碍了中等掺杂的P3HT:FTCNQ的长程传输。然而,使用魔蓝对P3HT进行强掺杂会导致电导率提高,且距离弹性>80%。一旦达到高导电状态(>30 S/cm),不同聚合物:掺杂剂体系的距离弹性具有普遍性。这突出了一种有效的策略,可克服静电束缚和多尺度聚合物有序化方面的限制,提高掺杂共轭聚合物的短程和长程电导率。