Lloberas N, Fernández-Alarcón B, Vidal-Alabró A, Colom H
Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.
Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
Transpl Int. 2025 Sep 1;38:14201. doi: 10.3389/ti.2025.14201. eCollection 2025.
Tacrolimus is an immunosuppressant with a narrow therapeutic index and a high intra- and inter-patient variability showing significant challenges in optimal dosing and monitoring. Historically, pre-dose concentration monitoring and simplified area under the curve measurements have been the standard approach. However, recent advances in pharmacokinetic modeling have improved individualized dosing strategies, moving beyond empirical methods. This review explores the evolving landscape of Tacrolimus therapeutic drug monitoring, focusing on advanced modeling techniques that support personalized dosing. Key methodological approaches include Population Pharmacokinetic (PopPK) modeling, Bayesian prediction, Physiologically-Based Pharmacokinetic (PBPK) modeling, and emerging machine learning and artificial intelligence technologies. While no single method provides a perfect solution, these approaches are complementary and offer increasingly sophisticated tools for dose individualization. The review critically examines the potential and limitations of current modeling strategies, highlighting the complexity of translating advanced statistical and mathematical techniques into clinically accessible tools. A significant challenge remains the gap between sophisticated modeling techniques and the practical usability for healthcare professionals. The need for user-friendly platforms is emphasized, with recognition of existing commercial solutions while also noting their inherent limitations. Future directions point towards more integrated, intelligent systems that can bridge the current technological and practical gaps in personalized immunosuppressant therapy.
他克莫司是一种免疫抑制剂,治疗指数狭窄,患者体内和患者之间的变异性较高,在最佳给药和监测方面面临重大挑战。从历史上看,给药前浓度监测和简化的曲线下面积测量一直是标准方法。然而,药代动力学建模的最新进展改进了个体化给药策略,超越了经验方法。本综述探讨了他克莫司治疗药物监测的不断演变的格局,重点关注支持个性化给药的先进建模技术。关键的方法包括群体药代动力学(PopPK)建模、贝叶斯预测、基于生理的药代动力学(PBPK)建模以及新兴的机器学习和人工智能技术。虽然没有一种方法能提供完美的解决方案,但这些方法是互补的,为剂量个体化提供了越来越复杂的工具。该综述批判性地审视了当前建模策略的潜力和局限性,强调了将先进的统计和数学技术转化为临床可用工具的复杂性。一个重大挑战仍然是复杂的建模技术与医疗保健专业人员的实际可用性之间的差距。强调了对用户友好平台的需求,认可现有的商业解决方案,同时也指出了它们固有的局限性。未来的方向指向更集成、智能的系统,这些系统可以弥合个性化免疫抑制治疗中当前的技术和实际差距。