Conversa Giulia, Botticella Lucia, Lazzizera Corrado, Bonasia Anna, Duri Luigi Giuseppe, Elia Antonio
Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy.
Front Plant Sci. 2025 Sep 1;16:1662491. doi: 10.3389/fpls.2025.1662491. eCollection 2025.
is a succulent halophyte from the Brassicaceae family, commonly found along sandy coasts. Understanding its response mechanisms to sodium excess is crucial for its exploitation under sustainable biosaline farming.
For the first time, this research investigated the pinnatifid population from the Apulia region (Italy) grown under varying levels of NaCl (0 -T0, 100 -T100 and 400 -T400 mM NaCl).
The T100 plants showed higher leaf area (LA) and specific leaf area (SLA) compared to T0, with a slight reduction in succulence index (SI). In T400 plants, a reduction in shoot and root fresh weight, water content (WC), leaf dry weight, LA, and SLA was observed, alongside an increase in SI and dry matter concentration. No changes were detected in leaf Na and Cl concentrations, whereas T400 stems accumulated Na. Leaf K, Mg, and Ca concentrations remained stable. The operating efficiency of PSII (ΦPSII) was similar across treatments. In salt-exposed plants, the decrease of Fv'/Fm' was counteracted by an improvement of qP, with carotenoids and anthocyanins appearing to be involved in photoprotection. Salt-exposed plants maintained stomatal opening (gs), allowing a higher CO2 assimilation rate (A), especially in T100. Despite unimpaired A, T400 plants exhibited reduced canopy-level photosynthesis due to lower LA, leading to reduced shoot biomass. Among antioxidants, ascorbic acid and anthocyanins were effective in improving the antioxidative defence of T400 plants.
The results indicate that employs a complex protective strategy involving morphological adjustments, selective ion accumulation, efficient photoprotection, maintained gas exchange, and a potent antioxidant system to mitigate salinity stress, demonstrating its strong potential for biosaline agriculture.
[植物名称]是十字花科的一种肉质盐生植物,常见于 sandy 海岸。了解其对钠过量的响应机制对于在可持续生物盐碱农业下对其进行开发利用至关重要。
本研究首次调查了来自意大利普利亚地区的 pinnatifid 种群在不同 NaCl 水平(0 - T0、100 - T100 和 400 - T400 mM NaCl)下的生长情况。
与 T0 相比,T100 植株的叶面积(LA)和比叶面积(SLA)更高,肉质指数(SI)略有降低。在 T400 植株中,地上部和根部鲜重、含水量(WC)、叶干重、LA 和 SLA 均有所降低,同时 SI 和干物质浓度增加。叶片 Na 和 Cl 浓度未检测到变化,而 T400 茎中积累了 Na。叶片 K、Mg 和 Ca 浓度保持稳定。各处理间 PSII 的运行效率(ΦPSII)相似。在盐处理植株中,Fv'/Fm' 的降低被 qP 的提高所抵消,类胡萝卜素和花青素似乎参与了光保护作用。盐处理植株保持气孔开放(gs),从而具有较高的 CO2 同化率(A),尤其是在 T100 中。尽管 A 未受影响,但由于 LA 较低,T400 植株的冠层水平光合作用降低,导致地上部生物量减少。在抗氧化剂中,抗坏血酸和花青素有效地提高了 T400 植株的抗氧化防御能力。
结果表明,[植物名称]采用了一种复杂的保护策略,包括形态调整、选择性离子积累、有效的光保护、维持气体交换和强大的抗氧化系统来减轻盐胁迫,显示出其在生物盐碱农业中的强大潜力。
原文中“sandy”未翻译,因为不清楚其具体指代的准确含义,可能是特定海岸类型等。需根据实际情况补充完整准确的信息。