Fajardo M, Morgan S A, Chilibroste P, Lee M R F, Rivero M J
Departamento de Producción Animal, Facultad de Agronomía Universidad de la República, Paysandú 60000, Uruguay.
Harper Adams University, Edgmond, Newport, Shropshire TF10 8NB, UK.
Animal. 2025 Oct;19(10):101635. doi: 10.1016/j.animal.2025.101635. Epub 2025 Aug 28.
Grasslands cover a significant portion of the Earth's land and offer many benefits. In the UK, they constitute the largest agricultural area and support livestock production. Traditional set-stocking (SS) and continuous grazing methods allow animals to selectively graze more palatable and nutritious plant parts and species, boosting individual animal productivity in the short term but can be detrimental to long-term pasture productivity. Cell grazing (CG), an intensive rotational system, is proposed as an alternative that can enhance system productivity and profitability through increased pasture production, utilisation, and stocking rates; with potential to optimise natural resource use (e.g., land) and mitigate environmental impacts (e.g., soil carbon sequestration). A 4-year study at Rothamsted Research's North Wyke site in southwest England compared animal and pasture responses under SS and CG stocking methods using a split-block design with three replicates (enclosures) per treatment. The SS enclosures (1.5-1.75 ha) were continuously grazed with fixed stocking rates, and CG enclosures (1.0 ha) were rotationally grazed with flexible daily grazing area allocations and stocking rates. Grazing occurred from spring to autumn, using two cohorts of autumn-born dairy × beef steers, each grazed for 2 years before slaughter. Measurements included standing herbage mass (weekly), herbage chemical composition (fortnightly), steer liveweight (monthly), and botanical composition (spring 2018 and 2022). DM intake was estimated based on animal energy requirements. Significant interaction effects (P < 0.05) were found for most variables, apart from metabolisable energy, ADF and NDF which were affected by treatment (P < 0.05) and year (P < 0.001), and DM content which was affected by year only (P < 0.001). Average daily gain was higher in SS (0.77 kg/d) than CG (0.60 kg/d), linked to higher estimated DM intake (7.2 vs 6.2 kg DM). However, annual liveweight (LW) production per hectare was greater in CG (687 vs 476 kg LW/ha, respectively), due to higher total pasture production (6 053 vs 3 667 kg DM/ha, respectively) and stocking rate (2 362 vs 1 290 kg LW/ha, respectively). Herbage nutritional quality varied, with CG having higher metabolisable energy and water-soluble carbohydrates, and lower fibre (ADF and NDF) concentrations. Changes in botanical composition also varied between treatments. The proportion of perennial ryegrass increased under CG (42-69%, P < 0.001) but declined under SS (36-16%, P < 0.01). These results highlight that while SS can enhance individual animal gains, CG improves total system productivity and pasture composition. Long-term, replicated experiments like this are crucial for evaluating the long-term viability and sustainability of differing stocking methods and grazing management strategies.
草原覆盖了地球陆地的很大一部分,并且带来诸多益处。在英国,草原构成了最大的农业区域,支撑着畜牧业生产。传统的固定放牧(SS)和连续放牧方法使动物能够有选择地啃食更可口且营养丰富的植物部分和物种,在短期内提高了个体动物的生产力,但可能对长期牧场生产力不利。小区轮牧(CG)是一种集约化的轮牧系统,被提议作为一种替代方案,它可以通过提高牧草产量、利用率和载畜率来提高系统生产力和盈利能力;有可能优化自然资源利用(如土地)并减轻环境影响(如土壤碳固存)。在英格兰西南部洛桑试验站的北威克试验场进行的一项为期4年的研究,采用裂区设计,每个处理设置三个重复(围栏),比较了SS和CG放牧方法下动物和牧场的反应。SS围栏(1.5 - 1.75公顷)以固定载畜率持续放牧,CG围栏(1.0公顷)以灵活的每日放牧面积分配和载畜率进行轮牧。放牧从春季持续到秋季,使用两批秋季出生的奶牛×肉牛阉牛,每批在屠宰前放牧2年。测量指标包括立草量(每周)、牧草化学成分(每两周)、阉牛体重(每月)和植物组成(2018年春季和2022年)。干物质摄入量根据动物能量需求估算。除了可代谢能量、酸性洗涤纤维和中性洗涤纤维受处理(P < 0.05)和年份(P < 0.001)影响,以及干物质含量仅受年份影响(P < 0.001)外,大多数变量都发现了显著的交互作用(P < 0.05)。SS组的平均日增重(0.77千克/天)高于CG组(0.60千克/天),这与较高的估计干物质摄入量(7.2千克干物质对6.2千克干物质)有关。然而,由于总牧草产量更高(分别为6053千克干物质/公顷对3667千克干物质/公顷)和载畜率更高(分别为2362千克体重/公顷对1290千克体重/公顷),CG组每公顷的年体重(LW)产量更高(分别为687千克体重/公顷对476千克体重/公顷)。牧草营养质量有所不同,CG组的可代谢能量和水溶性碳水化合物含量较高,纤维(酸性洗涤纤维和中性洗涤纤维)浓度较低。植物组成的变化在不同处理之间也有所不同。多年生黑麦草的比例在CG组增加(42% - 69%,P < 0.001),但在SS组下降(36% - 16%,P < 0.01)。这些结果表明,虽然SS可以提高个体动物的增重,但CG提高了整个系统的生产力和牧场组成。这样的长期重复实验对于评估不同放牧方法和放牧管理策略的长期可行性和可持续性至关重要。