Zhang Yujia, Xu Chaojun, Zhao Zhenyu, Su Yikai, Guo Xuhan
State Key Laboratory of Photonics and Communications, School of Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light Sci Appl. 2025 Sep 18;14(1):331. doi: 10.1038/s41377-025-01984-x.
Computational spectrometers are at the forefront of spectroscopy, promising portable, on-chip, or in-situ spectrum analysis through the integration of advanced computational techniques into optical systems. However, existing computational spectrometer systems have yet to fully exploit optical properties due to imperfect spectral responses, resulting in increased system complexity and compromised performance in resolution, bandwidth, and footprint. In this study, we introduce optical chaos into spectrum manipulation via cavity deformation, leveraging high spatial and spectral complexities to address this challenge. By utilizing a single chaotic cavity, we achieve high diversity in spectra, facilitating channel decorrelation of 10 pm and ensuring optimal reconstruction over 100 nm within an ultra-compact footprint of 20 × 22 μm as well as an ultra-low power consumption of 16.5 mW. Our approach not only enables state-of-the-art on-chip spectrometer performance in resolution-bandwidth-footprint metric, but also has the potential to revolutionize the entire computational spectrometer ecosystem.
计算光谱仪处于光谱学的前沿,通过将先进的计算技术集成到光学系统中,有望实现便携式、片上或原位光谱分析。然而,由于光谱响应不完善,现有的计算光谱仪系统尚未充分利用光学特性,导致系统复杂性增加,分辨率、带宽和占地面积方面的性能受到影响。在本研究中,我们通过腔变形将光学混沌引入光谱操纵,利用高空间和光谱复杂性来应对这一挑战。通过使用单个混沌腔,我们实现了光谱的高度多样性,促进了10皮米的通道去相关,并确保在20×22微米的超紧凑占地面积以及16.5毫瓦的超低功耗下,在100纳米范围内实现最佳重建。我们的方法不仅在分辨率-带宽-占地面积指标上实现了片上光谱仪的先进性能,而且还具有彻底改变整个计算光谱仪生态系统的潜力。