Jensen Annette Bruun, Copplestone David, Guidetti Roberto, Heer Martina, Pittia Paola, Berggren Åsa
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom.
Front Physiol. 2025 Sep 3;16:1628696. doi: 10.3389/fphys.2025.1628696. eCollection 2025.
As space agencies progress toward long-duration missions and extraterrestrial colonisation, Bioregenerative Life Support Systems (BLSS) have become central to achieving closed-loop sustainability. Edible insects offer a highly efficient protein source suited for BLSS integration, yet the unique stressors of spaceflight, microgravity, ionising radiation, and limited microbial exposure, pose significant risks to insect immunity and pathogen dynamics. This review synthesises current research on insect immune function, microbiome stability, and disease susceptibility under space-relevant conditions, highlighting vulnerabilities introduced by physical, nutritional and behavioural stressors. We emphasise species-specific immune traits, life stage- and sex-dependent responses, and the contribution of natural behaviours and transgenerational immunity to colony resilience. Further, we examine the synergistic effects of the space environment and high-density rearing on pathogen transmission and virulence evolution. Mitigation strategies, including environmental controls, probiotic interventions and biosensor-based health monitoring, are discussed. By identifying critical knowledge gaps, particularly concerning immune suppression under microgravity and radiation, density-driven pathogen evolution, and the stability of behavioural immunity, we propose system-level responses to support robust insect health. Our synthesis advances the framework for designing resilient, health-optimised insect rearing systems for future space missions and terrestrial applications. Ensuring insect immune competence will be essential for ecological stability and food security in extraterrestrial environments.
随着航天机构朝着长期任务和外星殖民的方向发展,生物再生生命支持系统(BLSS)已成为实现闭环可持续性的核心。可食用昆虫提供了一种适合整合到BLSS中的高效蛋白质来源,然而,太空飞行、微重力、电离辐射以及有限的微生物接触等独特压力源,对昆虫免疫力和病原体动态构成了重大风险。本综述综合了当前关于在与太空相关条件下昆虫免疫功能、微生物群落稳定性和疾病易感性的研究,突出了物理、营养和行为压力源所带来的脆弱性。我们强调物种特异性免疫特征、生命阶段和性别依赖性反应,以及自然行为和跨代免疫对群体恢复力的贡献。此外,我们研究了太空环境和高密度饲养对病原体传播和毒力进化的协同作用。讨论了缓解策略,包括环境控制、益生菌干预和基于生物传感器的健康监测。通过识别关键知识空白,特别是关于微重力和辐射下的免疫抑制、密度驱动病原体进化以及行为免疫稳定性方面的空白,我们提出了系统层面的应对措施,以支持强健的昆虫健康。我们的综述推进了为未来太空任务和地面应用设计有恢复力、健康优化的昆虫饲养系统的框架。确保昆虫的免疫能力对于外星环境中的生态稳定和粮食安全至关重要。