Li Chen-Yan, Wu Hai-Bo, Duan Ya-Wei, Gao Peng, Li Hong-Xiao, Wang Xue-Chao, Wang Yun-Can, Wang Yan-Qing, Bai Shi-Ru, Jia Yuan, Du Rong-Pin
Hebei North University, Zhangjiakou, Hebei, China.
Hebei General Hospital, Shijiazhuang, China.
Front Cardiovasc Med. 2025 Sep 3;12:1641855. doi: 10.3389/fcvm.2025.1641855. eCollection 2025.
To develop a nomogram model integrating the HALP score (a composite score of hemoglobin, albumin, lymphocytes, and platelets) and sST2 for predicting the risk of major adverse cardiovascular events (MACE) within 1 year after percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI).
This retrospective analysis included 236 AMI patients undergoing emergency PCI (2019-2024), categorized into MACE ( = 102) and non-MACE ( = 134) groups. Independent predictors were identified through multivariate logistic regression analysis, and a nomogram model was constructed. Model performance was validated using receiver operating characteristic (ROC) curves and the Bootstrap method ( = 1,000).
Multivariate analysis revealed that Killip class IV (OR = 3.758, 0.009), high sST2 levels (OR = 1.008, 0.009), high LDL-C (OR = 1.533, 0.041), high LVEDD (OR = 1.106, 0.009), and low HALP score (OR = 0.958, 0.023) were independent predictors of MACE. The combined model exhibited significantly better predictive performance than single indicators (AUC = 0.833, 95% CI: 0.781-0.886), with a sensitivity of 87.3% and specificity of 68.7%. The nomogram demonstrated good calibration after Bootstrap validation (Hosmer-Lemeshow test 0.157).
The nomogram model developed in this study, which integrates the HALP score (reflecting inflammatory-nutritional status) and sST2 (a marker of myocardial fibrosis) along with clinical indicators, can effectively predict the risk of MACE after PCI and provides a visual tool for individualized risk stratification.
建立一种整合HALP评分(血红蛋白、白蛋白、淋巴细胞和血小板的综合评分)和可溶性ST2(sST2)的列线图模型,以预测急性心肌梗死(AMI)患者经皮冠状动脉介入治疗(PCI)后1年内发生主要不良心血管事件(MACE)的风险。
本回顾性分析纳入了236例接受急诊PCI的AMI患者(2019 - 2024年),分为MACE组(n = 102)和非MACE组(n = 134)。通过多因素逻辑回归分析确定独立预测因素,并构建列线图模型。使用受试者工作特征(ROC)曲线和Bootstrap法(n = 1000)验证模型性能。
多因素分析显示,Killip分级IV级(OR = 3.758,P = 0.009)、高sST2水平(OR = 1.008,P = 0.009)、高LDL - C(OR = 1.533,P = 0.041)、高左室舒张末期内径(LVEDD,OR = 1.106,P = 0.009)和低HALP评分(OR = 0.958,P = 0.023)是MACE的独立预测因素。联合模型的预测性能显著优于单一指标(AUC = 0.833,95%CI:0.781 - 0.886),灵敏度为87.3%,特异度为68.7%。列线图经Bootstrap验证后显示出良好的校准度(Hosmer - Lemeshow检验P = 0.157)。
本研究建立的列线图模型整合了HALP评分(反映炎症 - 营养状态)、sST2(心肌纤维化标志物)及临床指标,能够有效预测PCI术后MACE风险,并为个体化风险分层提供了直观工具。