Xu Yuxin, Wan Wei, Wang Nan
Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Front Chem. 2025 Sep 4;13:1672437. doi: 10.3389/fchem.2025.1672437. eCollection 2025.
Neuronal nitric oxide synthase (nNOS) produces nitric oxide (NO) in neurons, essential for learning and memory, but excessive activity causes oxidative/nitrosative stress, contributing to neuropsychiatric disorders. nNOS activation is regulated by calcium-activated calmodulin (CaM) binding and SUMO1 modification at the CaM-binding domain (CaMBD). Our prior studies showed modified CaMBD peptides can modulate NO production in mouse neurons, but their efficacy, particularly in the middle cerebral artery occlusion (MCAO) model, remains untested. The overlap between SUMO1 and CaM-binding sites raises questions about their interplay and the role of SENP1-mediated deSUMOylation in attenuating nNOS hyperactivity. This study investigates the interactions between CaMBD peptides, SUMO1 modification at K725 and K739, and SENP1-mediated deSUMOylation to develop therapeutic strategies for regulating nNOS activity and mitigating neurotoxicity.
Structural models of the SENP1-SUMO1-nNOS complex were built using X-ray crystallographic data (PDB: 2IY0, 2LL7) and homology modeling, followed by molecular docking with Z-DOCK and 500-ns molecular dynamics simulations using AMBER 24 with the Amber19SB force field. Binding free energies were calculated via MM-GBSA, and interactions analyzed with CPPTRAJ. , male C57BL/6 mice (4-6 weeks) underwent MCAO. Peptides (25 μg/mouse) were injected into hippocampal CA1 and cortical M1 regions pre-MCAO. Spatial learning and memory were assessed via the Morris water maze, and infarct volumes quantified by TTC staining 24 h post-MCAO. Data were analyzed using one-way ANOVA.
Peptides N0 and N3 showed no significant toxicity, while N1 and N2 reduced survival, likely due to excessive nNOS activation and inflammation. N0 reduced infarct volume but did not improve behavioral outcomes. Molecular dynamics simulations revealed distinct deSUMOylation mechanisms at K725 and K739, with K739 showing stronger SENP1 binding, supported by RMSD and RMSF analyses. Free energy calculations confirmed SENP1's binding selectivity at K739.
N0 mitigated ischemia-induced damage in the MCAO model, unlike N2 and N3, suggesting moderate CaMBD affinity prevents excessive nNOS activation and aberrant SUMOylation at K739, critical for neuroprotection. Stronger SENP1 binding at K739 supports targeted deSUMOylation strategies. Further research is needed to optimize peptide therapies and clarify CaM-SUMOylation interactions for nNOS-related disorders.
神经元型一氧化氮合酶(nNOS)在神经元中产生一氧化氮(NO),这对学习和记忆至关重要,但过度活跃会导致氧化/亚硝化应激,从而引发神经精神疾病。nNOS的激活受钙激活的钙调蛋白(CaM)结合以及CaM结合域(CaMBD)处的SUMO1修饰调控。我们之前的研究表明,修饰后的CaMBD肽可以调节小鼠神经元中的NO生成,但其疗效,特别是在大脑中动脉闭塞(MCAO)模型中的疗效,仍未得到测试。SUMO1和CaM结合位点之间的重叠引发了关于它们相互作用以及SENP1介导的去SUMO化在减轻nNOS过度活跃中的作用的问题。本研究调查了CaMBD肽、K725和K739处的SUMO1修饰以及SENP1介导的去SUMO化之间的相互作用,以开发调节nNOS活性和减轻神经毒性的治疗策略。
使用X射线晶体学数据(PDB:2IY0、2LL7)和同源建模构建SENP1-SUMO1-nNOS复合物的结构模型,随后使用Z-DOCK进行分子对接,并使用带有Amber19SB力场的AMBER 24进行500纳秒的分子动力学模拟。通过MM-GBSA计算结合自由能,并使用CPPTRAJ分析相互作用。4至6周龄的雄性C57BL/6小鼠接受MCAO手术。在MCAO术前将肽(25μg/小鼠)注射到海马CA1区和皮质M1区。通过莫里斯水迷宫评估空间学习和记忆,并在MCAO术后24小时通过TTC染色对梗死体积进行定量。数据使用单因素方差分析进行分析。
肽N0和N3未显示出明显毒性,而N1和N2降低了存活率,可能是由于nNOS过度激活和炎症所致。N0减小了梗死体积,但未改善行为结果。分子动力学模拟揭示了K725和K739处不同的去SUMO化机制,RMSD和RMSF分析表明K739显示出更强的SENP1结合。自由能计算证实了SENP1在K739处的结合选择性。
与N2和N3不同,N0减轻了MCAO模型中缺血诱导的损伤,这表明适度的CaMBD亲和力可防止nNOS过度激活和K739处异常的SUMO化,这对神经保护至关重要。K739处更强的SENP1结合支持靶向去SUMO化策略。需要进一步研究以优化肽疗法并阐明CaM-SUMO化相互作用在nNOS相关疾病中的作用。