Suppr超能文献

机器学习驱动的胎儿酒精谱系障碍血液生物标志物分析及表没食子儿茶素干预

Machine learning-driven blood biomarker profiling and EGCG intervention in fetal alcohol spectrum disorder.

作者信息

Ramos-Triguero Anna, Navarro-Tapia Elisabet, Vieiros Melina, Martínez Leopoldo, García-Algar Óscar, Andreu-Fernández Vicente

机构信息

Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain.

出版信息

Int J Clin Health Psychol. 2025 Jul-Sep;25(3):100620. doi: 10.1016/j.ijchp.2025.100620. Epub 2025 Sep 4.

Abstract

Fetal alcohol spectrum disorder (FASD) is a complex neurodevelopmental condition caused by prenatal alcohol exposure (PAE), often underdiagnosed due to heterogeneous symptoms and diagnostic challenges. This study aimed to identify serum-based biomarkers for early FASD diagnosis and assess the potential of epigallocatechin gallate (EGCG), a natural antioxidant found in green tea, in modulating markers related to FASD. Luminex immunoassays were employed to analyze serum samples from FASD patients, identifying seven predictive biomarkers involved in neuroinflammation and immune dysregulation: IL-10, IFNγ, CCL2, NGFβ, IL-1β, CX3CL1, and CXCL16. These biomarkers reflect key disruptions in brain health, particularly in neuroinflammation, which contributes to the cognitive, behavioral, and mental health challenges frequently observed in FASD patients, including memory deficits, attention problems, and emotional dysregulation. To enhance diagnostic precision, machine learning (ML) models were trained on these biomarker datasets, with Random Forest (RF) achieving the highest accuracy (0.89), sensitivity (0.92), specificity (0.83), and ROC AUC (0.88). Additionally, an open-label pilot study in children diagnosed with FASD showed significant restoration of the levels of IFNy, CX3CL1, IL-1β, IL-10, and NGFβ after 12 months of EGCG treatment, suggesting its potential role in mitigating neuroinflammatory responses and promoting neurogenesis. These findings underscore the value of integrating serum biomarkers with ML-driven approaches to advance FASD diagnostics, while also identifying EGCG as a promising intervention for neurodevelopmental and mental health impairments associated with the disorder.

摘要

胎儿酒精谱系障碍(FASD)是一种由产前酒精暴露(PAE)引起的复杂神经发育疾病,由于症状异质性和诊断挑战,常常未被充分诊断。本研究旨在确定基于血清的早期FASD诊断生物标志物,并评估绿茶中发现的天然抗氧化剂表没食子儿茶素没食子酸酯(EGCG)在调节与FASD相关标志物方面的潜力。采用Luminex免疫分析法分析FASD患者的血清样本,确定了七种参与神经炎症和免疫失调的预测生物标志物:IL-10、IFNγ、CCL2、NGFβ、IL-1β、CX3CL1和CXCL16。这些生物标志物反映了大脑健康的关键破坏,特别是在神经炎症方面,这导致了FASD患者经常出现的认知、行为和心理健康挑战,包括记忆缺陷、注意力问题和情绪失调。为了提高诊断精度,在这些生物标志物数据集上训练了机器学习(ML)模型,随机森林(RF)模型的准确率最高(0.89)、灵敏度(0.92)、特异性(0.83)和ROC曲线下面积(0.88)。此外,一项针对诊断为FASD的儿童的开放标签试点研究表明,EGCG治疗12个月后,IFNy、CX3CL1、IL-1β、IL-10和NGFβ水平显著恢复,表明其在减轻神经炎症反应和促进神经发生方面的潜在作用。这些发现强调了将血清生物标志物与ML驱动方法相结合以推进FASD诊断的价值,同时也确定EGCG是一种有前景的干预措施,可用于治疗与该疾病相关的神经发育和心理健康障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1c/12446210/0db2e8421e6d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验