Suppr超能文献

通过锆掺杂削弱RuO共价性以促进吸附质演化机制途径在超稳定质子交换膜水电解中的主导地位。

Weakening the RuO covalency to promote the dominance of adsorbate evolution mechanism pathway by zirconium doping for ultra-stable proton exchange membrane water electrolysis.

作者信息

Zhang Huai-Zheng, Wang Xin, Xie Yi-Fan, Li Chen, Zhao Zi-Gang, Shao Pei-Yuan, Zhang Wen-Chao, Feng Shi, Zhang Yun-Long, Zhao Lei, Wang Zhen-Bo

机构信息

State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang Province, China.

Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.

出版信息

J Colloid Interface Sci. 2025 Sep 22;703(Pt 1):139091. doi: 10.1016/j.jcis.2025.139091.

Abstract

In the anode catalytic systems of proton exchange membrane water electrolysis (PEMWEs), RuO emerges as a viable low-cost alternative for Ir in reducing hydrogen production costs. However, the high covalency of RuO bonds instigates lattice oxygen oxidation, resulting in a rapid decline in catalyst activity. Herein, we report Zr-doped RuO synthesized via hydrothermal reaction followed by heat treatment, which simultaneously enhances catalytic activity and suppresses lattice oxygen reactivity through synergistic structural and electronic modulation. Zr-doped RuO features an overpotential of only 221 mV at 10 mA cm and demonstrates remarkable durability over 1500 h in operation, displaying exceptional oxygen evolution reaction (OER) performance in acidic media. In situ Raman characterization and density functional theory (DFT) calculations indicate that Zr regulates the adsorption properties of Ru sites, weakens RuO covalency, suppresses the activity of lattice oxygen, and promotes the dominance of the adsorbate evolution mechanism (AEM) reaction pathway, thus increasing the service life in PEMWE systems. When evaluated in a PEMWE, this catalyst exhibits excellent catalytic performance with a voltage of only 1.38 V at 100 mA cm, demonstrating superior durability over 250 h under continuous operation. This strategy by suppressing the participation of lattice oxygen and the formation of oxygen vacancy in reaction provides an important reference value for the synthesis of efficient and stable RuO-based electrocatalysts for acidic water electrolysis.

摘要

在质子交换膜水电解(PEMWE)的阳极催化体系中,RuO作为一种可行的低成本替代物,可用于替代Ir以降低制氢成本。然而,RuO键的高共价性引发晶格氧氧化,导致催化剂活性迅速下降。在此,我们报道了通过水热反应后热处理合成的Zr掺杂RuO,其通过协同的结构和电子调制同时提高了催化活性并抑制了晶格氧的反应活性。Zr掺杂RuO在10 mA cm时过电位仅为221 mV,在运行1500 h以上表现出卓越的耐久性,在酸性介质中展现出优异的析氧反应(OER)性能。原位拉曼表征和密度泛函理论(DFT)计算表明,Zr调节Ru位点的吸附性能,减弱RuO共价性,抑制晶格氧的活性,并促进吸附质析出机制(AEM)反应路径占主导,从而延长了PEMWE系统中的使用寿命。当在PEMWE中进行评估时,该催化剂表现出优异的催化性能,在100 mA cm时电压仅为1.38 V,在连续运行250 h以上表现出卓越的耐久性。这种通过抑制晶格氧参与和反应中氧空位形成的策略,为合成用于酸性水电解的高效稳定的RuO基电催化剂提供了重要的参考价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验