Suppr超能文献

用于经导管主动脉瓣植入术中入路路径分割与规划的不确定性引导主动学习

Uncertainty-Guided Active Learning for Access Route Segmentation and Planning in Transcatheter Aortic Valve Implantation.

作者信息

Islam Mahdi, Tabassum Musarrat, Mayr Agnes, Kremser Christian, Haltmeier Markus, Almar-Munoz Enrique

机构信息

Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria.

Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria.

出版信息

J Imaging. 2025 Sep 17;11(9):318. doi: 10.3390/jimaging11090318.

Abstract

Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure for treating severe aortic stenosis, where optimal vascular access route selection is critical to reduce complications. It requires careful selection of the iliac artery with the most favourable anatomy, specifically, one with the largest diameters and no segments narrower than 5 mm. This process is time-consuming when carried out manually. We present an active learning-based segmentation framework for contrast-enhanced Cardiac Magnetic Resonance (CMR) data, guided by probabilistic uncertainty and pseudo-labelling, enabling efficient segmentation with minimal manual annotation. The segmentations are then fed into an automated pipeline for diameter quantification, achieving a Dice score of 0.912 and a mean absolute percentage error (MAPE) of 4.92%. An ablation study using pre- and post-contrast CMR showed superior performance with post-contrast data only. Overall, the pipeline provides accurate segmentation and detailed diameter profiles of the aorto-iliac route, helping the assessment of the access route.

摘要

经导管主动脉瓣植入术(TAVI)是一种治疗严重主动脉瓣狭窄的微创手术,其中选择最佳的血管入路对于减少并发症至关重要。这需要仔细选择解剖结构最有利的髂动脉,具体来说,是直径最大且无窄于5毫米节段的髂动脉。手动进行此过程很耗时。我们提出了一种基于主动学习的分割框架,用于对比增强心脏磁共振(CMR)数据,由概率不确定性和伪标记引导,能够以最少的手动标注实现高效分割。然后将分割结果输入到用于直径量化的自动化管道中,Dice评分为0.912,平均绝对百分比误差(MAPE)为4.92%。使用对比前和对比后CMR的消融研究表明,仅使用对比后数据时性能更优。总体而言,该管道提供了主动脉 - 髂动脉路径的准确分割和详细直径轮廓,有助于评估入路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba4/12471150/6fe19dbc0027/jimaging-11-00318-g001.jpg

相似文献

本文引用的文献

1
Thoracic Aorta Measurements Using Intraoperative Transesophageal Echocardiography: Validation via Cardiac Magnetic Resonance.
J Cardiothorac Vasc Anesth. 2025 May;39(5):1135-1145. doi: 10.1053/j.jvca.2025.01.038. Epub 2025 Feb 3.
4
A Survey on Deep Active Learning: Recent Advances and New Frontiers.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):5879-5899. doi: 10.1109/TNNLS.2024.3396463. Epub 2025 Apr 4.
7
Active learning for medical image segmentation with stochastic batches.基于随机批次的医学图像分割主动学习
Med Image Anal. 2023 Dec;90:102958. doi: 10.1016/j.media.2023.102958. Epub 2023 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验