Ji Qing Qin, Ding Zewen, Duan Jingxian, Nie Jiahui, Wu Chenli, Maciver Sutherland K, Theil Thomas, Evans A Mark, Schirmer Eric C
Institute of Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, UK.
Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Subcell Biochem. 2025;115:37-63. doi: 10.1007/978-3-032-00537-3_3.
Lamins provide physical support to the nucleus and maintain nuclear shape. In many disease states linked to lamin and other nuclear envelope (NE) protein mutations, altered nuclear shape is viewed as a reflection of aberrant lamin and nuclear functions; however, there are also cell types with dramatically invaginated nuclei made with wild-type functional lamins. Closer inspection suggests four classes of NE invagination (NEI): large NE indentations or clefts, tubular NE invaginations that span from one side of the nucleus to the other, blind tubular NE invaginations that project variable distances into the nucleus, and blind invaginations of the inner nuclear membrane alone. These NEIs are likely formed by a combination of NE interactions with the cytoskeleton and with chromatin. Specific functions of NEIs are still being investigated, but their increasing relative nuclear surface area could increase NE/lamin functions in genome organization and regulation. Indeed, NEIs have recently been shown to hold a unique epigenetic signature compared to other NE regions in the same cell. Furthermore, studies have shown that tubular NEIs contain a Ca store and that each NEI demarcates a cytoplasmic nanocourse, where calcium appears to be exchanged across the ONM between the NEI lumen and thus isolated cytoplasmic nanocourses. Therefore, Ca flux at NEIs could additionally provide a more direct/rapid route to genome regulation compared to traditional signalling cascades. Here we discuss what is currently known about NEIs and the various possibilities of how they may contribute to genome regulation.
核纤层蛋白为细胞核提供物理支撑并维持核形态。在许多与核纤层蛋白和其他核膜(NE)蛋白突变相关的疾病状态中,核形态的改变被视为核纤层蛋白和核功能异常的反映;然而,也有一些细胞类型,其细胞核具有显著的内陷,而这些细胞核是由野生型功能性核纤层蛋白构成的。进一步观察发现有四类核膜内陷(NEI):大的核膜凹陷或裂隙、从细胞核一侧延伸到另一侧的管状核膜内陷、向细胞核内突出不同距离的盲管状核膜内陷以及仅内核膜的盲内陷。这些核膜内陷可能是由核膜与细胞骨架和染色质的相互作用共同形成的。核膜内陷的具体功能仍在研究中,但它们相对核表面积的增加可能会增强核膜/核纤层蛋白在基因组组织和调控中的功能。事实上,最近研究表明,与同一细胞中的其他核膜区域相比,核膜内陷具有独特的表观遗传特征。此外,研究表明管状核膜内陷含有一个钙储存库,并且每个核膜内陷划定了一个细胞质纳米通道,在这个通道中,钙似乎在核膜内陷腔与隔离的细胞质纳米通道之间通过外核膜进行交换。因此,与传统信号级联反应相比,核膜内陷处的钙通量可能还为基因组调控提供了一条更直接/快速的途径。在这里,我们讨论目前关于核膜内陷的已知信息以及它们可能对基因组调控产生影响的各种可能性。