Suppr超能文献

使用高效计算图像处理技术增强沥青路面隐藏缺陷的地面穿透雷达特征

GPR Feature Enhancement of Asphalt Pavement Hidden Defects Using Computational-Efficient Image Processing Techniques.

作者信息

Xie Shengjia, Chen Jingsong, Cai Ming, Cheng Zhiqiang, Wang Siqi, Zhang Yixiang

机构信息

Shanghai Road and Bridge Group Co., Ltd., Shanghai 200433, China.

Shanghai Engineering Research Center of Green Pavement Materials, Shanghai 200433, China.

出版信息

Materials (Basel). 2025 Sep 20;18(18):4400. doi: 10.3390/ma18184400.

Abstract

Hyperbolic reflection features from ground-penetrating radar (GPR) data have been recognized as essential indicators for detecting hidden defects in the asphalt pavement. Computer vision and deep learning algorithms have been developed to detect and enhance the hyperbolic features of hidden defects. However, migrating existing hyperbolic feature detection methods using raw GPR data results in inaccurate predictions. Pre-processing raw GPR data using straightforward image processing methods could enhance the reflection features for fast and accurate hyperbolic detection during real-time GPR measurements. This study proposed accessible and straightforward image processing methods as GPR data preprocessing steps (such as the Sobel edge detector and histogram equalization) to assist existing computer vision algorithms for reflection feature enhancement during the GPR survey. Field tests were conducted, and several image processing methods with existing standard image processing libraries were applied. The proposed regions of the identified hyperbola signal-to-noise ratio (RIHSNR) were used to quantify the enhancement performance of hyperbolic feature detectability. Applying Sobel edge detection and Otsu's thresholding to GPR data significantly improves detection accuracy and speed: mAP@0.5 rises from 0.65 to 0.85 for Faster R-CNN and from 0.72 to 0.88 for CBAM-YOLOv8 using the proposed computer vision methods as preprocessing steps. At the same time, inference time drops to 30 ms and 25 ms, respectively.

摘要

探地雷达(GPR)数据中的双曲线反射特征已被视为检测沥青路面隐藏缺陷的重要指标。人们已开发出计算机视觉和深度学习算法来检测和增强隐藏缺陷的双曲线特征。然而,使用原始GPR数据迁移现有的双曲线特征检测方法会导致预测不准确。使用简单的图像处理方法对原始GPR数据进行预处理,可以增强反射特征,以便在实时GPR测量期间进行快速准确的双曲线检测。本研究提出了一些可访问且简单的图像处理方法作为GPR数据预处理步骤(如Sobel边缘检测器和直方图均衡化),以协助现有的计算机视觉算法在GPR测量期间增强反射特征。进行了现场测试,并应用了几种带有现有标准图像处理库的图像处理方法。所提出的识别双曲线信噪比区域(RIHSNR)用于量化双曲线特征可检测性的增强性能。将Sobel边缘检测和大津阈值法应用于GPR数据可显著提高检测精度和速度:使用所提出的计算机视觉方法作为预处理步骤时,Faster R-CNN的mAP@0.5从0.65提高到0.85,CBAM-YOLOv8的mAP@0.5从0.72提高到0.88。同时,推理时间分别降至30毫秒和25毫秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验