Suppr超能文献

将体外生物等效性检查器与基于计算机模拟的生理药代动力学建模相结合,以预测口服药物产品的药代动力学特征。

Integrating In Vitro BE Checker with In Silico Physiologically Based Biopharmaceutics Modeling to Predict the Pharmacokinetic Profiles of Oral Drug Products.

作者信息

Niino Takuto, Masada Takato, Takagi Toshihide, Kataoka Makoto, Yoshida Hiroyuki, Yamashita Shinji, Kambayashi Atsushi

机构信息

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.

Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata 573-0101, Osaka, Japan.

出版信息

Pharmaceutics. 2025 Sep 20;17(9):1222. doi: 10.3390/pharmaceutics17091222.

Abstract

: The objective of this study was to develop a Physiologically Based Biopharmaceutics Modeling (PBBM) framework that can predict PK profiles in humans based on data generated from the BE Checker. : Metoprolol and dipyridamole were selected as model drugs. A mathematical model was developed to describe drug dissolution, membrane permeation, and dynamic changes in pH and fluid volume within the BE Checker system. Using data generated under various experimental conditions, dissolution rate constants were estimated. For dipyridamole, the precipitation rate constant was also estimated, assuming simultaneous dissolution and precipitation processes. The estimated parameters were subsequently incorporated into the human PBBM to simulate PK profiles. Finally, the predictive accuracy of PK parameters such as Cmax and AUC was assessed. : For metoprolol, the PK profiles using the paddle revolution rates of 100 and 200 rpm closely matched the observed human data, particularly for Cmax and AUC, a key indicator of BE. In the case of dipyridamole, accurate predictions of the mean human PK profile were achieved when using BE Checker data obtained under high paddle speed (200 rpm) and longer pre-FaSSIF infusion times (20-30 min). Conversely, simulations based on lower paddle speed (50 rpm) and shorter pre-FaSSIF infusion time (10 min) underestimated plasma concentrations in humans. : These findings suggest that the combination of BE Checker data acquired under high agitation conditions and the in silico mathematical model developed in this study enables accurate prediction of average human PK profiles.

摘要

本研究的目的是开发一个基于生理学的生物药剂学建模(PBBM)框架,该框架可以根据BE Checker生成的数据预测人体的药代动力学(PK)特征。选择美托洛尔和双嘧达莫作为模型药物。开发了一个数学模型来描述药物溶解、膜渗透以及BE Checker系统内pH值和液体体积的动态变化。利用在各种实验条件下生成的数据,估算了溶解速率常数。对于双嘧达莫,假设同时存在溶解和沉淀过程,还估算了沉淀速率常数。随后将估算的参数纳入人体PBBM以模拟PK特征。最后,评估了Cmax和AUC等PK参数的预测准确性。对于美托洛尔,使用100和200转/分钟的桨叶转速得到的PK特征与观察到的人体数据紧密匹配,特别是对于Cmax和AUC(生物等效性的关键指标)。对于双嘧达莫,当使用在高桨叶转速(200转/分钟)和更长的预FaSSIF输注时间(20 - 30分钟)下获得的BE Checker数据时,实现了对人体平均PK特征的准确预测。相反,基于较低桨叶转速(50转/分钟)和较短的预FaSSIF输注时间(10分钟)的模拟低估了人体血浆浓度。这些发现表明,在高搅拌条件下获取的BE Checker数据与本研究中开发的计算机数学模型相结合,能够准确预测人体平均PK特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验