Suppr超能文献

基于LASSO方法和Boruta特征选择的会阴前列腺活检后急性尿潴留风险预测模型

The risk prediction model for acute urine retention after perineal prostate biopsy based on the LASSO approach and Boruta feature selection.

作者信息

Shen Cheng, Chen Gen, Chen Zhan, You Junjie, Zheng Bing

机构信息

Department of Urology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.

Jiangsu Nantong Urological Clinical Medical Center, Nantong, Jiangsu, China.

出版信息

Front Oncol. 2025 Sep 11;15:1626529. doi: 10.3389/fonc.2025.1626529. eCollection 2025.

Abstract

OBJECTIVE

One known side effect of transperineal (TP) prostate biopsies is acute urine retention (AUR). We aimed to create and evaluate a predictive model for the post-paracentesis risk of acquiring AUR.

METHODS

This study included 599 patients undergoing prostate biopsies (April 2020-July 2023) at the Second Affiliated Hospital of Nantong University, selected based on abnormal digital rectal examination and/or PSA (prostate-specificantigen) > 4 ng/mL. Acute urinary retention (AUR) was defined as the inability to void within 72 hours post-biopsy, requiring catheterization. Patients were randomly divided into training (419 cases) and test (180 cases) sets. Univariate logistic analysis and feature selection Boruta and LASSO (Least absolute shrinkage and selection operator) identified predictors, followed by multivariate logistic regression to develop a predictive nomogram for AUR. Internal validation used the test set, with model performance assessed via the c-index, ROC (Receiver Operating Characteristic) curve, calibration plot, and decision curve analysis. The nomogram demonstrated strong discrimination, calibration, and clinical utility for AUR risk prediction.

RESULTS

In 86 patients (14.3%), AUR happened. An examination of multivariate logistic regression revealed six distinct risk variables for AUR. Based on these independent risk factors, a nomogram was constructed. The training and validation groups' c-indices showed the model's high accuracy and stability. The calibration curve demonstrates that the corrective effect of the training and verification groups is perfect, and the area under the receiver operating characteristic curve indicates great identification capacity. DCA (Decision Curve Analysis) curves, or decision curve analysis, demonstrated the model's significant net therapeutic effect.

DISCUSSION

The nomogram model created in this work can offer a personalized and intuitive analysis of the risk of AUR and has intense discrimination and accuracy. It can help create efficient preventative measures and identify high-risk populations.

摘要

目的

经会阴前列腺穿刺活检的一个已知副作用是急性尿潴留(AUR)。我们旨在创建并评估一种预测经穿刺活检后发生AUR风险的模型。

方法

本研究纳入了南通大学第二附属医院2020年4月至2023年7月期间接受前列腺穿刺活检的599例患者,入选标准为直肠指检异常和/或前列腺特异性抗原(PSA)>4 ng/mL。急性尿潴留(AUR)定义为活检后72小时内无法排尿,需要导尿。患者被随机分为训练集(419例)和测试集(180例)。单因素逻辑回归以及特征选择方法Boruta和LASSO(最小绝对收缩和选择算子)确定预测因素,随后进行多因素逻辑回归以开发AUR预测列线图。内部验证使用测试集,通过c指数、ROC(受试者工作特征)曲线、校准图和决策曲线分析评估模型性能。该列线图对AUR风险预测具有很强的区分度、校准度和临床实用性。

结果

86例患者(14.3%)发生了AUR。多因素逻辑回归分析显示有六个不同的AUR风险变量。基于这些独立危险因素构建了列线图。训练组和验证组的c指数显示该模型具有较高的准确性和稳定性。校准曲线表明训练组和验证组的校正效果良好,受试者工作特征曲线下面积表明识别能力很强。决策曲线分析(DCA)曲线显示该模型具有显著的净治疗效果。

讨论

本研究中创建的列线图模型可以对AUR风险进行个性化且直观的分析,具有很强的区分度和准确性。它有助于制定有效的预防措施并识别高危人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d188/12460100/df854e40a90f/fonc-15-1626529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验