Suppr超能文献

Modulational instability and associated multiple dark solitons in relativistically degenerate electron-positron-ion plasmas.

作者信息

Jahangir R, Masood W, Siddiq M, Batool N, Ullah Shakir, Al-Ghamdi Hanan, Tiofack C G L, El-Tantawy Samir A

机构信息

National Centre for Physics, Shahdara Valley Road, Islamabad, 44000, Pakistan.

COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan.

出版信息

Sci Rep. 2025 Sep 30;15(1):33970. doi: 10.1038/s41598-025-10607-9.

Abstract

The modulational instability (MI) of the ion-acoustic waves (IAWs) is analyzed in an unmagnetized electron-positron-ion (EPI) plasma having relativistically degenerate electrons and positrons. For this purpose, the nonlinear Schrödinger (NLS) equation is derived using the derivative expansion method. The criteria for MI are numerically examined in the vicinity of pulsars, and it is observed that for both nonrelativistic and ultrarelativistic regimes, the EPI plasma remains modulationally stable. The nonlinear structures, derived using Hirota's method, are the dark envelope solitons. The dark solitons are further classified as black and gray solitons depending on the relation between the amplitude of the vacuum wave train and the propagation vector of the envelope soliton. The increase in the positron concentration is observed to stabilize the EPI system and is also found to reduce the amplitude of the dark envelope soliton. The interaction of black and gray, as well as the two gray solitons, shows that, being nonlinear waves, the condition of linear superposition is not met at the interaction point for dark envelope solitons. Furthermore, the spatial regime of the soliton interaction is reduced for the gray-gray envelope interaction compared to the black-gray envelope interaction, as well as the ultrarelativistic case compared to the nonrelativistic case. This study is novel as it discusses the interaction of dark solitons of the NLS in the context of plasmas for the first time. The results of the present model are beneficial to comprehend the dark envelope soliton interaction for astrophysical plasmas; however, by incorporating changes in the behavior of electrons and positrons, they are relevant for diverse conditions in laboratory and space plasmas.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e5/12485151/f0381d083ae4/41598_2025_10607_Fig1_HTML.jpg

本文引用的文献

1
Soliton: A dispersion-less solution with existence and its types.
Heliyon. 2022 Dec 7;8(12):e12122. doi: 10.1016/j.heliyon.2022.e12122. eCollection 2022 Dec.
2
Experimental observation of dark solitons on the surface of water.
Phys Rev Lett. 2013 Mar 22;110(12):124101. doi: 10.1103/PhysRevLett.110.124101. Epub 2013 Mar 21.
3
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066401. doi: 10.1103/PhysRevE.81.066401. Epub 2010 Jun 15.
4
Dissipative dark soliton in a complex plasma.
Phys Rev Lett. 2009 Apr 3;102(13):135002. doi: 10.1103/PhysRevLett.102.135002. Epub 2009 Mar 31.
5
Formation and dynamics of dark solitons and vortices in quantum electron plasmas.
Phys Rev Lett. 2006 Jun 23;96(24):245001. doi: 10.1103/PhysRevLett.96.245001. Epub 2006 Jun 20.
6
Electron-acoustic plasma waves: oblique modulation and envelope solitons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036411. doi: 10.1103/PhysRevE.69.036411. Epub 2004 Mar 31.
7
Dark solitons in electron-positron plasmas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066401. doi: 10.1103/PhysRevE.64.066401. Epub 2001 Nov 8.
8
Experimental observation of the fundamental dark soliton in optical fibers.
Phys Rev Lett. 1988 Nov 21;61(21):2445-2448. doi: 10.1103/PhysRevLett.61.2445.
9
Head-on collisions of dark solitons near the zero-dispersion point in optical fibers.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Sep;54(3):3048-3051. doi: 10.1103/physreve.54.3048.
10
Isolated solitons in an ultrarelativistic electron-positron plasma of a pulsar magnetosphere.
Phys Rev A Gen Phys. 1989 Aug 15;40(4):2203-2206. doi: 10.1103/physreva.40.2203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验