Suppr超能文献

有意识主动推理I:量子模型自然地实现了实时规划与控制所需的路径积分。

Conscious active inference I: A quantum model naturally implements the path integral needed for real-time planning and control.

作者信息

Wiest Michael C, Puniani Arjan Singh

机构信息

Neuroscience Department Wellesley College, 21 Wellesley College Rd., Wellesley, MA 02481, United States.

University of Pittsburgh Rehab Neural Engineering Labs, 1622 Locust St, 4th Floor, Pittsburgh, PA 15219, United States.

出版信息

Comput Struct Biotechnol J. 2025 Sep 13;30:108-121. doi: 10.1016/j.csbj.2025.09.017. eCollection 2025.

Abstract

Active inference is a general framework for optimizing the behavior and learning of a sentient agential system. It may be interpreted as a general theory of sentient behavior and has been used to quantitatively model a wide variety of perceptual and behavioral contexts. Moreover, variables in neural process models of active inference appear to be represented by specific pathways in the brain, and they predict some features of actual neural responses and behavioral patterns in a variety of contexts. These applications support the validity of the active inference framework for describing real animals. However, implementing active inference in a conscious agent requires a system capable of sophisticated probabilistic computations, including a weighted average over its potential future trajectories-a path integral. Although it is straightforward to construct realistic classical biophysical neural models to approximate these computations in simple contexts, we argue in this first of two companion papers that classical Hodgkin-Huxley-style neurons are unlikely to be capable of performing these computations in a realistic context. We then explain that conscious (temporally deep) active inference is mathematically equivalent to the path integral that underlies quantum dynamics. A quantum model thus provides a natural, biologically plausible mechanistic implementation of the processing required by active inference. In the second paper we review independent strong theoretical and experimental evidence from my (Wiest) lab and others' supporting the "Orch OR" quantum theory of consciousness as a collective quantum property of intraneuronal microtubules, which explains the existence of discrete cycles of perceptual inference.

摘要

主动推理是一种用于优化有感知能力的智能系统行为和学习的通用框架。它可以被解释为一种关于有感知能力行为的通用理论,并已被用于对各种感知和行为情境进行定量建模。此外,主动推理的神经过程模型中的变量似乎由大脑中的特定通路来表示,并且它们在各种情境中预测实际神经反应和行为模式的一些特征。这些应用支持了主动推理框架用于描述真实动物的有效性。然而,在有意识的智能体中实现主动推理需要一个能够进行复杂概率计算的系统,包括对其潜在未来轨迹的加权平均——路径积分。虽然在简单情境中构建现实的经典生物物理神经模型来近似这些计算很直接,但我们在这两篇配套论文的第一篇中认为,经典的霍奇金 - 赫胥黎式神经元不太可能在现实情境中执行这些计算。然后我们解释说,有意识的(时间深度上的)主动推理在数学上等同于量子动力学基础的路径积分。因此,量子模型为主动推理所需的处理提供了一种自然的、生物学上合理的机制实现。在第二篇论文中,我们回顾了来自我(维斯特)的实验室以及其他实验室的独立的强有力的理论和实验证据,这些证据支持作为神经元内微管集体量子特性的意识的“协同客观还原”量子理论,该理论解释了感知推理离散循环的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7de/12481606/975e158f1d8c/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验