Suppr超能文献

大肠杆菌在生长和饥饿期间的腺苷酸能荷

Adenylate energy charge in Escherichia coli during growth and starvation.

作者信息

Chapman A G, Fall L, Atkinson D E

出版信息

J Bacteriol. 1971 Dec;108(3):1072-86. doi: 10.1128/jb.108.3.1072-1086.1971.

Abstract

The value of the adenylate energy charge, [(adenosine triphosphate) + (1/2) (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types.

摘要

在大肠杆菌细胞生长过程中,腺苷酸能荷,即[(三磷酸腺苷)+(1/2)(二磷酸腺苷)]/[(三磷酸腺苷)+(二磷酸腺苷)+(一磷酸腺苷)]的值约为0.8。在生长停止后的稳定期,或在碳源受限培养物中的饥饿期间,能荷缓慢下降至约0.5的值,然后下降得更快。在能荷缓慢下降期间,所有细胞都能够形成菌落,但活力的快速下降与能荷的急剧下降同时发生。这些结果表明,生长仅能在能荷值高于约0.8时发生,活力在0.8至0.5的值之间维持,而细胞在低于0.5的值时死亡。先前报道的各种生物体和组织的腺苷酸浓度列表支持了基于体外酶动力学观察的预测,即在各种类型的完整代谢细胞中,能荷稳定在0.85附近。

相似文献

1
Adenylate energy charge in Escherichia coli during growth and starvation.
J Bacteriol. 1971 Dec;108(3):1072-86. doi: 10.1128/jb.108.3.1072-1086.1971.
2
Adenylate energy charge in Saccharomyces cerevisiae during starvation.
J Bacteriol. 1975 Mar;121(3):975-82. doi: 10.1128/jb.121.3.975-982.1975.
5
Dynamics of energy charge and adenine nucleotides during uncoupling of catabolism and anabolism in Penicillium ochrochloron.
Mycol Res. 2009 Dec;113(Pt 12):1422-32. doi: 10.1016/j.mycres.2009.09.011. Epub 2009 Oct 7.
8
Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase.
J Bacteriol. 1981 Mar;145(3):1374-85. doi: 10.1128/jb.145.3.1374-1385.1981.
9
Adenylate energy charge in Mytilus edulis L. during exposure to air.
Biochem Soc Trans. 1976;4(3):442-3. doi: 10.1042/bst0040442.

引用本文的文献

2
Bioenergetic stress potentiates antimicrobial resistance and persistence.
Nat Commun. 2025 Jun 9;16(1):5111. doi: 10.1038/s41467-025-60302-6.
3
Mini Bubble Columns for Miniaturizing Scale-Down.
Eng Life Sci. 2024 Sep 1;25(2):e202400051. doi: 10.1002/elsc.202400051. eCollection 2025 Feb.
4
Epigenetic modifications and metabolic gene mutations drive resistance evolution in response to stimulatory antibiotics.
Mol Syst Biol. 2025 Mar;21(3):294-314. doi: 10.1038/s44320-025-00087-4. Epub 2025 Jan 16.
5
Interplay of niche and respiratory network in shaping bacterial colonization.
J Biol Chem. 2025 Jan;301(1):108052. doi: 10.1016/j.jbc.2024.108052. Epub 2024 Dec 9.
6
Proton motive force and antibiotic tolerance in bacteria.
Microb Biotechnol. 2024 Nov;17(11):e70042. doi: 10.1111/1751-7915.70042.
8
Adenosine Triphosphate and Adenylate Energy Charge in Ready-to-Eat Food.
Metabolites. 2024 Aug 7;14(8):440. doi: 10.3390/metabo14080440.
9
Polyphosphate kinase deletion increases laboratory productivity in cyanobacteria.
Front Plant Sci. 2024 Feb 7;15:1342496. doi: 10.3389/fpls.2024.1342496. eCollection 2024.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验