Suppr超能文献

冲动后水蛭神经元的电导变化、生电泵与超极化

Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses.

作者信息

Jansen J K, Nicholls J G

出版信息

J Physiol. 1973 Mar;229(3):635-55. doi: 10.1113/jphysiol.1973.sp010158.

Abstract

Following trains of impulses, sensory neurones in the C.N.S. of the leech show a prolonged hyperpolarization, which lasts for seconds or minutes. In the present investigation the mechanisms that underly this hyperpolarization have been studied by recording intracellularly. Two factors have been found to be responsible. One is the activity of an electrogenic pump (see Baylor & Nicholls, 1969b); the other is a long-lasting change in K conductance.1. Additional evidence that an electrogenic pump contributes to a slow after-hyperpolarization of leech sensory neurones is provided by the effects of injecting Na intracellularly. This leads to an increase in membrane potential that is blocked by the cardiac glycoside strophanthidin. Furthermore, after a train of impulses, reducing the K concentration in the external fluid characteristically reduces the hyperpolarizing action of the pump.2. The hyperpolarization following impulses is associated with a reduction of the cell membrane resistance that can persist for several minutes.3. Several lines of evidence suggest that the reduction in input resistance during the hyperpolarization is mainly due to an increased permeability to K. Thus, when the K concentration in Ringer fluid is reduced, the peak amplitude of the hyperpolarization following a train becomes larger. Furthermore, the conductance dependent part of the after-hyperpolarization has a reversal potential close to the equilibrium potential for K (E(K)). Substitution of Cl by SO(4) has little effect either on the after-hyperpolarization or on the conductance change following a train.4. Increased external Ca concentrations lead to a marked increase in the hyperpolarization that follows impulse activity. The enhanced hyperpolarization in high Ca is associated with a corresponding reduction in input resistance. The amplitude and duration of the hyperpolarization following a brief train of impulses can be increased by a factor of 5 or more in Ringer fluid containing 10 mM-Ca instead of the usual 1.8 mM. The hyperpolarization and resistance changes still occur in solutions containing 20 mM-Mg.5. To augment the hyperpolarization the increased concentration of Ca must be present during the train of impulses.6. The relative contributions of the K conductance increase and of the electrogenic pump for generating the hyperpolarization after impulse activity are different in the three types of sensory cell responding to touch, pressure and noxious stimulation.

摘要

在一连串冲动之后,水蛭中枢神经系统中的感觉神经元会出现持续数秒或数分钟的超极化。在本研究中,通过细胞内记录对这种超极化的潜在机制进行了研究。发现有两个因素起作用。一个是生电泵的活动(见贝勒和尼科尔斯,1969b);另一个是钾离子电导的持久变化。

  1. 向细胞内注射钠离子的效应提供了额外证据,证明生电泵促成了水蛭感觉神经元的缓慢后超极化。这会导致膜电位升高,而这种升高会被强心苷毒毛花苷所阻断。此外,在一连串冲动之后,降低细胞外液中的钾离子浓度会典型地降低泵的超极化作用。

  2. 冲动后的超极化与细胞膜电阻的降低有关,这种降低可持续数分钟。

  3. 几条证据表明,超极化期间输入电阻的降低主要是由于对钾离子的通透性增加。因此,当林格液中的钾离子浓度降低时,一连串冲动后的超极化峰值幅度会变大。此外,后超极化的电导依赖性部分的反转电位接近钾离子的平衡电位(E(K))。用硫酸根取代氯离子对后超极化或一连串冲动后的电导变化几乎没有影响。

  4. 细胞外钙离子浓度增加会导致冲动活动后超极化显著增加。高钙条件下增强的超极化与输入电阻的相应降低有关。在含有10 mM钙离子而非通常的1.8 mM钙离子的林格液中,短暂的一连串冲动后的超极化幅度和持续时间可增加5倍或更多。在含有20 mM镁离子的溶液中,超极化和电阻变化仍然会发生。

  5. 为了增强超极化,在一连串冲动期间必须存在增加的钙离子浓度。

  6. 在对触觉、压力和有害刺激作出反应的三种感觉细胞中,钾离子电导增加和生电泵对冲动活动后产生超极化的相对贡献有所不同。

相似文献

1
Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses.
J Physiol. 1973 Mar;229(3):635-55. doi: 10.1113/jphysiol.1973.sp010158.
3
After-effects of nerve impulses on signalling in the central nervous system of the leech.
J Physiol. 1969 Aug;203(3):571-89. doi: 10.1113/jphysiol.1969.sp008880.
8
Chemical transmission between individual Retzius and sensory neurones of the leech in culture.
J Physiol. 1982 Feb;323:195-210. doi: 10.1113/jphysiol.1982.sp014068.

引用本文的文献

1
Tonic Stimulation of Dorsal Root Ganglion Results in Progressive Decline in Recruitment of Aα/β-Fibers in Rats.
Neuromodulation. 2024 Dec;27(8):1347-1359. doi: 10.1016/j.neurom.2024.06.498. Epub 2024 Jul 25.
2
Initial Variability and Time-Dependent Changes of Neuronal Response Features Are Cell-Type-Specific.
Front Cell Neurosci. 2022 Apr 27;16:858221. doi: 10.3389/fncel.2022.858221. eCollection 2022.
3
The Effect of Spinal Cord Stimulation Frequency on the Neural Response and Perceived Sensation in Patients With Chronic Pain.
Front Neurosci. 2021 Jan 21;15:625835. doi: 10.3389/fnins.2021.625835. eCollection 2021.
4
Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Jan;207(1):69-85. doi: 10.1007/s00359-021-01462-w. Epub 2021 Jan 22.
5
Non-synaptic Plasticity in Leech Touch Cells.
Front Physiol. 2019 Nov 27;10:1444. doi: 10.3389/fphys.2019.01444. eCollection 2019.
6
Na/K-pump and neurotransmitter membrane receptors.
Invert Neurosci. 2018 Nov 28;19(1):1. doi: 10.1007/s10158-018-0221-7.
9
The sodium-potassium pump is an information processing element in brain computation.
Front Physiol. 2014 Dec 23;5:472. doi: 10.3389/fphys.2014.00472. eCollection 2014.

本文引用的文献

1
AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS.
Comp Biochem Physiol. 1965 Jan;14:167-83. doi: 10.1016/0010-406x(65)90017-4.
3
GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM: PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP.
J Neurophysiol. 1964 Mar;27:290-320. doi: 10.1152/jn.1964.27.2.290.
4
Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane.
J Gen Physiol. 1967 Jan;50(3):583-601. doi: 10.1085/jgp.50.3.583.
5
The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
J Physiol. 1969 Feb;200(2):459-96. doi: 10.1113/jphysiol.1969.sp008703.
6
Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium.
J Physiol. 1969 Apr;201(2):495-514. doi: 10.1113/jphysiol.1969.sp008769.
7
The influence of calcium on sodium efflux in squid axons.
J Physiol. 1969 Feb;200(2):431-58. doi: 10.1113/jphysiol.1969.sp008702.
8
Sodium and calcium components of action potentials in the Aplysia giant neurone.
J Physiol. 1968 Dec;199(2):347-65. doi: 10.1113/jphysiol.1968.sp008657.
9
Specific modalities and receptive fields of sensory neurons in CNS of the leech.
J Neurophysiol. 1968 Sep;31(5):740-56. doi: 10.1152/jn.1968.31.5.740.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验