Giaquinta R T, Dilley R A
Biochim Biophys Acta. 1975 May 15;387(2):288-305. doi: 10.1016/0005-2728(75)90111-5.
Silicomolybdate functions as an electron acceptor in a Photosystem II water oxidation (measured as O2 evolution) partial reaction that is 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) insensitive, that is, reduction os silicomolybdate occurs at or before the level of Q, the primary electron acceptor for Photosystem II. This report characterizes the partial reaction with the principal findings being as follows: 1. Electron transport to silicomolybdate significantly decreased room temperature Photosystem I side of the DCMU had no effect on the fluorescence level, consistent with silicomolybdate accepting electrons at or before Q. In the absence of DCMU, silicomolybdate is also reduced at a site on the Photosystem I side of the DCMU block, prior to or at plastoquinone, since the plastoquinone antagonist dibromothymoquinone (DBMIB) did not affect the electron transport rate. 3. Electron transport from water to silicomolybdate (+ DCMU) is not coupled to ATP formation, nor is there a measurable accumulation of protons within the membrane (measured by amine uptake). Silicomolybdate is not inhibitory to phosphorylation per se since neither cyclic nor post-illumination (XE) phosphorylation were inhibited. 4. Uncouplers stimulated electron transport from water to silicomolybdate in the pH range of 6 to 7, but inhibited at pH values near 8. These data are consistent with the view that when electron flow is through the abbreviated sequence of water to Photosystem II to silicomolybdate (+ DCMU), conditions are not established for the water protons to be deposited within the membrane. Experiments reported elsewhere (Fiaquinta, R.T., Dilley, R.A. and Horton, P.(19741 J. Bioenerg. 6, 167-177) and these data, are consistent with the hypothesis that electron transport between Q and plastoquinone energizes a membrane conformational change that is required to interact with the water oxication system so as to result in the deposition of water protons either within the membrane itself or within the inner oxmotic space.
硅钼酸盐在光系统II水氧化(以氧气释放量衡量)的部分反应中作为电子受体,该反应对3-(3,4-二氯苯基)-1,1-二甲基脲(DCMU)不敏感,也就是说,硅钼酸盐的还原发生在光系统II的初级电子受体Q的水平或之前。本报告对该部分反应进行了表征,主要发现如下:1. 向硅钼酸盐的电子传递显著降低了室温下光系统I一侧的荧光水平,DCMU对此无影响,这与硅钼酸盐在Q的水平或之前接受电子一致。在没有DCMU的情况下,硅钼酸盐也在DCMU阻断的光系统I一侧的一个位点被还原,在质体醌之前或在质体醌处,因为质体醌拮抗剂二溴百里醌(DBMIB)不影响电子传递速率。3. 从水到硅钼酸盐(+DCMU)的电子传递与ATP形成不偶联,膜内也没有可测量的质子积累(通过胺摄取测量)。硅钼酸盐本身对磷酸化没有抑制作用,因为循环磷酸化和光照后(XE)磷酸化均未被抑制。4. 解偶联剂在pH值为6至7的范围内刺激了从水到硅钼酸盐的电子传递,但在接近8的pH值时受到抑制。这些数据与以下观点一致,即当电子流通过从水到光系统II再到硅钼酸盐(+DCMU)的简化序列时,没有建立起让水质子沉积在膜内的条件。其他地方报道的实验(菲亚昆塔,R.T.,迪利,R.A.和霍顿,P.(1974年)《生物能量学杂志》6,167 - 177)以及这些数据,与以下假设一致,即Q和质体醌之间的电子传递激发了一种膜构象变化,这种变化是与水氧化系统相互作用所必需的,从而导致水质子沉积在膜本身或内部渗透空间内。