Kossiakoff A A, Chambers J L, Kay L M, Stroud R M
Biochemistry. 1977 Feb 22;16(4):654-64. doi: 10.1021/bi00623a016.
The three-dimensional crystal structure of bovine trypsinogen at approximately pH 7.5 was initially solved at 2.6 A resolution using the multiple isomorphous replacement method. Preliminary refinement cycles of the atomic coordinates trypsinogen have been carried out first to a resolution of 2.1 A, and later to 1.9 A, using constrained difference Fourier refinement; During the process, structure factors Fc and phi c were calculated from the trypsinogen structure and final interpretation was based on an electron-density map computed with terms (2 Fo - Fc) and phases phic at a resolution of 1.9 A. Crystals of trypsinogen grown from ethanol-water mixtures are trigonal with space group P3121, and cell dimension a = 55.17 A and c = 109.25 A. The structure is compared with the bovine diisopropylphosphoryltrypsin structure at approximately pH 7.2, oirginally determined from orthohombic crystals by Stroud et al. (Stroud, R.M., Kay L.M., and Dickerson, R.E. (1971), Cold Spring Harbor Symp. Quant. Biol. 36, 125-140; Stroud, R.M., Kay, L.M., and Dickerson, R.E. (1974), J. Mol. Biol. 83, 185-208), and later refined at 1.5 A resolution by Chambers and Stroud (Chambers, J.L., and Stroud, R.M. (1976), Acta Crystallogr. (in press)). At lower pH, 4.0-5.5 diogen, with cell dimensions a = 55.05 A and c = 109.45 A. This finding was used in the solution of the six trypsinogen heavy-atom derivatives prior to isomorphous phase analysis, and as a further basis of comparison between trypsinogen and the low pH trypsin structure. There are small differences between the two diisopropylphosphoryltrypsin structures. Bovine trypsinogen has a large and accessible cavity at the site where the native enzyme binds specific side chains of a substrate. The conformation and stability of the binding site differ from that found in trypsin at approximately pH 7.5, and from that in the low pH form of diisopropylphosphoryltrypsin. The catalytic site containing Asp-102, His-57, and Ser-195 is similar to that found in trypsin and contains a similar hydrogen-bounded network. The carboxyl group of Asp-194, which is salt bridged to the amino terminal of Ile-16 in native trypsin or other serine proteases, is apparently hydrogen bonded to internal solvent molecules in a loosely organized part of the zymogen structure. The unusually charged N-terminal hexapeptide of trypsinogen, whose removal leads to activation of the zymogen, lies on the outside surface of the molecule. There are significant structural changes which accompany activation in neighboring regions, which include residues 142-152, 215-550, 188A-195. The NH group of Gly-193, normally involved in stabilization of reaction intermediates (Steitz, T.A., Henderson, R., and Blow, D.M. (1969), J. Mol. Biol. 46, 337-348; Henderson, R. (1970), J. Mol. Biol. 54, 341-354; robertus, J.D., Kraut, J., Alden, R.A., and Birkoft, J.J. (1972), Biochemistry 11, 4293-4303) in the enzyme, is moved 1.9 A away from its position in trypsin...
最初使用多重同晶置换法,在约pH 7.5条件下以2.6 Å分辨率解析了牛胰蛋白酶原的三维晶体结构。首先利用约束差分傅里叶精修法,对胰蛋白酶原的原子坐标进行了初步精修循环,分辨率先达到2.1 Å,随后达到1.9 Å;在此过程中,根据胰蛋白酶原结构计算结构因子Fc和φc,并基于以1.9 Å分辨率计算的(2Fo - Fc)项和相位φc得到的电子密度图进行最终解释。从乙醇 - 水混合物中生长的胰蛋白酶原晶体为三方晶系,空间群为P3121,晶胞参数a = 55.17 Å,c = 109.25 Å。将该结构与在约pH 7.2条件下的牛二异丙基磷酰胰蛋白酶结构进行了比较,后者最初由斯特劳德等人从正交晶体中确定(斯特劳德,R.M.,凯,L.M.,和迪克森,R.E.(1971年),《定量生物学冷泉港研讨会》36,125 - 140;斯特劳德,R.M.,凯,L.M.,和迪克森,R.E.(1974年),《分子生物学杂志》83,185 - 208),后来由钱伯斯和斯特劳德在1.5 Å分辨率下进行了精修(钱伯斯,J.L.,和斯特劳德,R.M.(1976年),《晶体学报》(即将发表))。在较低pH值4.0 - 5.5条件下的胰蛋白酶原,晶胞参数a = 55.05 Å,c = 109.45 Å。这一发现被用于在同晶相位分析之前求解六种胰蛋白酶原重原子衍生物,并且作为胰蛋白酶原与低pH值胰蛋白酶结构之间进一步比较的基础。两种二异丙基磷酰胰蛋白酶结构之间存在微小差异。牛胰蛋白酶原在天然酶结合底物特定侧链的位点处有一个大的且可及的腔。结合位点的构象和稳定性与在约pH 7.5条件下的胰蛋白酶不同,也与低pH值形式的二异丙基磷酰胰蛋白酶不同。包含天冬氨酸 - 102、组氨酸 - 57和丝氨酸 - 195的催化位点与胰蛋白酶中的相似,并且包含类似的氢键网络。天冬氨酸 - 194的羧基在天然胰蛋白酶或其他丝氨酸蛋白酶中与异亮氨酸 - 16的氨基形成盐桥,在酶原结构的一个松散组织部分中显然与内部溶剂分子形成氢键。胰蛋白酶原异常带电的N端六肽位于分子外表面,其去除会导致酶原激活。在相邻区域,包括残基142 - 152、215 - 550、188A - 195,激活过程伴随着显著的结构变化。通常参与稳定反应中间体的甘氨酸 - 193的NH基团(施泰茨,T.A.,亨德森,R.,和布洛,D.M.(1969年),《分子生物学杂志》46,337 - 348;亨德森,R.(1970年),《分子生物学杂志》54,341 - 354;罗伯特斯,J.D.,克劳特,J.,奥尔登,R.A.,和比尔科夫特,J.J.(1972年),《生物化学》11,4293 - 4303),在酶中从其在胰蛋白酶中的位置移动了1.9 Å……