Suppr超能文献

日本根瘤菌中的葡萄糖分解代谢

Glucose catabolism in Rhizobium japonicum.

作者信息

Keele B B, Hamilton P B, Elkan G H

出版信息

J Bacteriol. 1969 Mar;97(3):1184-91. doi: 10.1128/jb.97.3.1184-1191.1969.

Abstract

Glucose catabolism in Rhizobium japonicum ATCC 10324 was investigated by the radiorespirometric method and by assaying for key enzymes of the major energy-yielding pathways. Specifically labeled glucose gave the following results for resting cells, with values expressed as per cent (14)CO(2) evolution: C-1=59%, C-2=51%, C-3=45%, C-4=59%, and C-6=43%. These values indicate that glucose was degraded by the Entner-Doudoroff pathway alone. Cells which grew in glucose-yeast extract-salts medium gave essentially the same pattern except for retardation of the C-6 carbon. The rates were: C-1=54%, C-2=42%, C-3=51%, C-4=59%, and C-6=32%. Hexokinase, glucose-6-phosphate dehydrogenase, transketolase, and an enzyme system which produces pyruvate from 6-phosphogluconate were found to be present in these cells. No 6-phosphogluconate dehydrogenase was detected. Oxidation of specifically labeled pyruvate gave the following (14)CO(2) evolution pattern: C-1=78%, C-2=48%, and C-3=37%; the pattern from acetate was C-1=73%; and C-2=56%. Oxidation of glutamate showed the preferential rate of (14)CO(2) evolution to be C-1 > C-2=C-5 > C-3, 4, whereas a higher yield of (14)CO(2) was obtained from the C-1 and C-4 carbons of succinate than from the C-2 and C-3 carbons. These data are consistent with the operation of the Entner-Doudoroff pathway and tricarboxylic acid cycle as the catabolic pathways of glucose oxidation in R. japonicum.

摘要

通过放射性呼吸测定法以及对主要产能途径关键酶的测定,对日本根瘤菌ATCC 10324中的葡萄糖分解代谢进行了研究。用特异性标记的葡萄糖对静息细胞进行实验,结果如下,数值以(14)CO₂释放百分比表示:C-1 = 59%,C-2 = 51%,C-3 = 45%,C-4 = 59%,C-6 = 43%。这些数值表明葡萄糖仅通过恩特纳-杜德洛夫途径降解。在葡萄糖-酵母提取物-盐培养基中生长的细胞除了C-6碳的降解延迟外,基本呈现相同的模式。降解速率为:C-1 = 54%,C-2 = 42%,C-3 = 51%,C-4 = 59%,C-6 = 32%。发现这些细胞中存在己糖激酶、葡萄糖-6-磷酸脱氢酶、转酮醇酶以及一种能从6-磷酸葡萄糖酸产生丙酮酸的酶系统。未检测到6-磷酸葡萄糖酸脱氢酶。特异性标记丙酮酸的氧化产生了以下(14)CO₂释放模式:C-1 = 78%,C-2 = 48%,C-3 = 37%;乙酸盐的模式为C-1 = 73%,C-2 = 56%。谷氨酸的氧化显示(14)CO₂释放的优先速率为C-1 > C-2 = C-5 > C-3、4,而琥珀酸的C-1和C-4碳产生的(14)CO₂产量高于C-2和C-3碳。这些数据与恩特纳-杜德洛夫途径和三羧酸循环作为日本根瘤菌中葡萄糖氧化的分解代谢途径的运行情况一致。

相似文献

1
Glucose catabolism in Rhizobium japonicum.
J Bacteriol. 1969 Mar;97(3):1184-91. doi: 10.1128/jb.97.3.1184-1191.1969.
2
Gluconate catabolism in Rhizobium japonicum.
J Bacteriol. 1970 Mar;101(3):698-704. doi: 10.1128/jb.101.3.698-704.1970.
4
Pathways of carbohydrate metabolism in Microcyclus species.
J Bacteriol. 1973 Jan;113(1):341-9. doi: 10.1128/jb.113.1.341-349.1973.
5
Carbohydrate metabolism in Agrobacterium tumefaciens.
J Bacteriol. 1973 Oct;116(1):304-13. doi: 10.1128/jb.116.1.304-313.1973.
6
Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae.
J Bacteriol. 1971 Nov;108(2):828-34. doi: 10.1128/jb.108.2.828-834.1971.
8
Radiorespirometric studies of Leucothrix mucor.
J Bacteriol. 1967 Sep;94(3):615-23. doi: 10.1128/jb.94.3.615-623.1967.
9
Carbohydrate catabolism of selected strains in the genus Agrobacterium.
Appl Microbiol. 1975 Nov;30(5):731-7. doi: 10.1128/am.30.5.731-737.1975.
10
Glucose metabolism in Neisseria gonorrhoeae.
J Bacteriol. 1974 Nov;120(2):702-14. doi: 10.1128/jb.120.2.702-714.1974.

引用本文的文献

1
In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium.
Environ Microbiol Rep. 2024 Jun;16(3):e13271. doi: 10.1111/1758-2229.13271.
2
sp. J8 can establish symbiosis with , increasing glycyrrhizin production.
Plant Biotechnol (Tokyo). 2021 Mar 25;38(1):57-66. doi: 10.5511/plantbiotechnology.20.1124a.
3
Expression of soybean plant hemoglobin gene family under abiotic stresses.
Plant Biotechnol (Tokyo). 2021 Mar 25;38(1):23-30. doi: 10.5511/plantbiotechnology.20.0907a.
4
Draft Genome Sequence of Burkholderia vietnamiensis Strain RS1, a Nitrogen-Fixing Endophyte Isolated from Sweet Potato.
Microbiol Resour Announc. 2018 Jul 26;7(3). doi: 10.1128/MRA.00820-18. eCollection 2018 Jul.
5
The Use of Transposon Insertion Sequencing to Interrogate the Core Functional Genome of the Legume Symbiont .
Front Microbiol. 2016 Nov 22;7:1873. doi: 10.3389/fmicb.2016.01873. eCollection 2016.
6
Isolation and metabolism of Vigna unguiculata root nodule protoplasts.
Planta. 1979 Jan;145(5):487-95. doi: 10.1007/BF00380104.
7
Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.
J Plant Res. 2012 May;125(3):395-406. doi: 10.1007/s10265-011-0459-1. Epub 2011 Oct 19.
10
Uptake and Metabolism of Carbohydrates by Bradyrhizobium japonicum Bacteroids.
Plant Physiol. 1987 Mar;83(3):535-40. doi: 10.1104/pp.83.3.535.

本文引用的文献

1
Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes.
Plant Physiol. 1966 Oct;41(8):1330-6. doi: 10.1104/pp.41.8.1330.
2
The bacteroids of the genus Rhizobium.
Bacteriol Rev. 1962 Jun;26(2 Pt 1-2):119-41.
4
GLUCOSE CATABOLISM IN AZOTOBACTER VINELANDII.
Arch Biochem Biophys. 1964 Apr;105:126-32. doi: 10.1016/0003-9861(64)90243-7.
6
Comparative catabolism of carbohydrates in Pseudomonas species.
J Bacteriol. 1960 Apr;79(4):601-11. doi: 10.1128/jb.79.4.601-611.1960.
7
Comparative study of glucose catabolism by the radiorespirometric method.
J Bacteriol. 1958 Aug;76(2):207-16. doi: 10.1128/jb.76.2.207-216.1958.
8
Metabolism of rhizobia in relation to effectiveness.
Can J Microbiol. 1957 Oct;3(6):879-84. doi: 10.1139/m57-097.
9
Radiorespirometric studies of Leucothrix mucor.
J Bacteriol. 1967 Sep;94(3):615-23. doi: 10.1128/jb.94.3.615-623.1967.
10
Gluconate metabolism in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):941-9. doi: 10.1128/jb.93.3.941-949.1967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验