Suppr超能文献

Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostriatum.

作者信息

Godukhin O V, Zharikova A D

出版信息

Neuroscience. 1984 Jun;12(2):377-83. doi: 10.1016/0306-4522(84)90059-9.

Abstract

In experiments with the use of a push-pull cannula and simultaneous recording of electrical activity at the site of perfusion, the release of L-[3H]glutamic acid from rat neostriatum induced by K+-depolarization (60 mM K+ in perfusate) has been shown to be inhibited by replacing Ca2+ in the perfusion medium by Co2+. In contrast, release of L-[3H]glutamate induced by electrical stimulation of frontal cortex is enhanced by replacement of these cations. Application of dopamine (10(-5)-10(-3) M). apomorphine (10(-4) M) or beta-phenylethylamine (10(-3) M) as well as stimulation of the substantia nigra enhanced the basal release of L-[3H]glutamate. Haloperidol (10(-4) M) completely abolished the effects of apomorphine and beta-phenylethylamine, and partially abolished the effect of dopamine. The enhancement induced by apomorphine is strongly dependent on the presence of Na+ in the perfusion medium. On the other hand, apomorphine (10(-4) M) and beta-phenylethylamine (10(-3) M) inhibited the release of glutamate induced by electrical stimulation of the frontal cortex and that by K+-depolarization (the latter was shown for apomorphine). This inhibition is also abolished by haloperidol. A possible functional role of endogenous dopamine in the regulation of glutamatergic neurotransmission in rat neostriatum is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验