Mandel K G, Lively M K, Lombardi D, Amos H
J Cell Physiol. 1983 Feb;114(2):235-44. doi: 10.1002/jcp.1041140214.
The culture of Nil hamster fibroblasts in MEM lacking nicotinamide (NAm-MEM) leads to: (1) the rapid loss of intracellular total nicotinamide adenine dinucleotide (NAD(H)) content in these cells from a level of 150-200 pmoles/10(5) cells to less than 20 pmoles/10(5) cells; (2) the cessation of cell division and inhibition of DNA synthesis; and (3) a reduction of glucose consumption and lactic acid production. In most situations, following nicotinamide starvation, the restoration of intracellular NAD(H) follows rapidly the readdition of NAD+ (oxidized), nicotinamide mononucleotide (NMN), nicotinamide, or nicotinic acid. Resumption of cell division occurs after only a lag of about 24 hours. Nil cells subcultured for three consecutive times in the absence of nicotinamide (3(0) NAm- cells) exhibit different behavior. These severely starved cells are incapable of quickly restoring their intracellular NAD(H) content to normal levels when provided with any pyridine ring compound except NAD+. One-hour exposure of such cells to NAD+ allows utilization of nicotinamide to rapidly restore intracellular NAD(H). This short incubation with NAD+ does not result in any significant restoration of intracellular NAD(H) or lead to the accumulation of an intracellular pool of some precursor. This function of NAD+ as a stimulatory signal to the NAD(H)-biosynthetic pathway in severely starved Nil cells is a previously unreported role of NAD+, and does not require protein synthesis.
在缺乏烟酰胺的最低限度必需培养基(NAm - MEM)中培养尼尔仓鼠成纤维细胞会导致:(1)这些细胞内的总烟酰胺腺嘌呤二核苷酸(NAD(H))含量从150 - 200皮摩尔/10⁵个细胞迅速降至低于20皮摩尔/10⁵个细胞;(2)细胞分裂停止且DNA合成受到抑制;(3)葡萄糖消耗和乳酸生成减少。在大多数情况下,烟酰胺饥饿后,细胞内NAD(H)的恢复在重新添加NAD⁺(氧化型)、烟酰胺单核苷酸(NMN)、烟酰胺或烟酸后迅速发生。细胞分裂的恢复仅在约24小时的延迟后出现。在无烟酰胺的情况下连续传代三次的尼尔细胞(3⁰NAm - 细胞)表现出不同的行为。当为这些严重饥饿的细胞提供除NAD⁺之外的任何吡啶环化合物时,它们无法迅速将细胞内NAD(H)含量恢复到正常水平。将此类细胞暴露于NAD⁺ 1小时可使烟酰胺被利用,从而迅速恢复细胞内NAD(H)。与NAD⁺的这种短时间孵育不会导致细胞内NAD(H)有任何显著恢复,也不会导致某些前体在细胞内池的积累。NAD⁺作为严重饥饿的尼尔细胞中NAD(H)生物合成途径的刺激信号的这一功能是NAD⁺以前未被报道的作用,且不需要蛋白质合成。