Chiesi M, Zurini M, Carafoli E
Biochemistry. 1984 Jun 5;23(12):2595-600. doi: 10.1021/bi00307a009.
The Ca2+-transporting ATPase of erythrocytes was isolated by calmodulin affinity chromatography. The backward reaction of the ATPase was investigated. The phosphorylation of the solubilized enzyme by Pi required Mg and was inhibited by Ca and vanadate in the micromolar concentration range. Significant amounts of phosphoenzyme could be obtained only in a medium containing high dimethyl sulfoxide concentrations (greater than 25%) in order to diminish water activity at the phosphorylation site. The phosphoenzyme formed in this way could not phosphorylate ADP. However, upon addition of Ca2+ ions and dilution of dimethyl sulfoxide in the phosphorylated preparation (water activity jump), a highly reactive phosphoenzyme species was obtained which could transfer phosphate in nearly stoichiometric amounts to ADP to form ATP.