Suppr超能文献

Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP.

作者信息

Vandest P, Labbe J P, Kassab R

出版信息

Eur J Biochem. 1980 Mar;104(2):433-42. doi: 10.1111/j.1432-1033.1980.tb04445.x.

Abstract
  1. An ATP analogue with a photoactivated azide group attached to the gamma-phosphate via an amide bond, ATP gamma-p-azidoanilide, appeared to have potential use as a photoaffinity label for the nucleotide-binding regions of ATP: guanidine phosphotransferases. Upon photolysis in the presence of lobster muscle arginine kinase and rabbit muscle creatine kinase, the analogue is converted to a potent inhibito of these two kinases. This photo-dependent inhibition is specific as it cannot be induced by azidoaniline, a mixture of azidoaniline and ATP or by ATP gamma-p-aminoanilide. Preirradiated under suitable conditions, the photoanalogue still shows a transitory inhibitory effect which, however, slowly vanishes with time (t0.5 = 3 h). 2. The photoinhibition is significantly decreased by the presence of ATP or ADP but is completely prevented by the addition of a mixture of nucleotide and guanidine substrates. Differential spectroscopy and affinity chromatography on Sepharose-ATP demonstrated the inability of photoinactivated arginine kinase and creatine kinase to recognize their nucleotide substrates. 3. Experiments with [14C]ATP gamma-p-azidoanilide indicated that photolysis is associated with an irreversible and stoichiometric binding of the ATP analogue to the enzymes. Autoradiographs made with the peptide maps corresponding to the tryptic digests of each 14C-labelled photomodified enzyme showed an unexpected highly specific labelling of the proteins. 4. Thiiol titrations of the kinases which have been subjected to various photolysis conditions led to the conclusion that the arylnitrene moiety of the photoanalogue is covalently attached to the single reactive cysteinyl side chain present in the active-site region of the two homologous kinases. This amino acid residue appears, therefore, to be located near the phosphate chain binding subsite occupied by the ATP analogue and probably also by the natural nucleotide substrates.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验