Sips H J, Brown D, Oonk R, Orci L
Biochim Biophys Acta. 1982 Nov 22;692(3):447-54. doi: 10.1016/0005-2736(82)90396-0.
Using both biochemical and morphological methods, the membrane orientation of plasma membrane vesicles from rat liver which are capable of catalysing the active transport of amino acids was investigated. In intact vesicles, the plasma membrane enzyme (Na+ + K+)-ATPase displays only a minor portion of its total activity which is greatly increased upon vesicle disruption. The same intact vesicles show an almost maximal binding of ouabain, which binds only to the extracellular side of the plasma membrane. A freeze-fracture analysis of the vesicles shows that a distinct population of relatively large vesicles have predominantly the in vivo membrane orientation. These large vesicles are labelled with numerous filipin-sterol complexes following exposure to the cholesterol probe, filipin, and are therefore assumed to be plasma membrane vesicles. A population of smaller vesicles with mainly an inside-out orientation were not labelled with filipin and are probably microsomes. The data obtained with both biochemical and ultrastructural techniques indicate that the plasma membrane vesicles isolated from rat liver for transport studies are mostly (at least 70%) orientated as in vivo, i.e. inside-in.