Thomas D D, Wendt C H, Francisz W, Hyde J S
Biophys J. 1983 Jul;43(1):131-5. doi: 10.1016/S0006-3495(83)84332-X.
Previously, saturation transfer (ST-EPR) studies of biomolecular dynamics have involved the use of a resonant cavity and the V'2 display (absorption, second harmonic, out of phase). In the present study, we replaced the resonant cavity with a loop-gap resonator and used the U'1 display (dispersion, first harmonic, out of phase) to study spin-labeled muscle fibers. The new resonator and display showed several advantages over those previously used. It produced virtually noiseless U'1 spectra on a 0.4 microliter sample using a 4 min scan; previous U'1 experiments on spin-labeled muscle, using a conventional rectangular cavity, resulted in an unacceptably low signal-to-noise ratio. The high filling factor of the resonator facilitated the study of these extremely small fiber bundles and permitted high microwave field intensities to be achieved at much lower incident microwave power levels, thus greatly enhancing the signal-to-noise ratio in U'1 experiments. This reduction in the noise level made it possible to benefit from the other advantages of U'1 over V'2, such as stronger signals, simpler line shapes, and simpler data analysis. For these muscle fiber samples, the resulting sensitivity (signal/noise/sample volume) of the U'1 signals was greater than 100 times that of V'2 signals obtained in a conventional cavity. Another advantage of the U'1 display is that signals from weakly immobilized probes, i.e., probes that have nanosecond rotational mobility relative to the labeled protein (myosin), are greatly suppressed relative to strongly immobilized probes. This reduces the ambiguity of spectral analysis, and eliminates the need for chemical treatments [e.g., using K3Fe(CN)6] that were previously required in muscle fibers and other systems. Further suppression of this weakly immobilized component was achieved in U'1 spectra by increasing the microwave power and decreasing the field modulation frequency.
此前,生物分子动力学的饱和转移(ST-EPR)研究涉及使用共振腔和V'2显示(吸收、二次谐波、异相)。在本研究中,我们用环形缝隙谐振器取代了共振腔,并使用U'1显示(色散、一次谐波、异相)来研究自旋标记的肌肉纤维。新的谐振器和显示相对于先前使用的具有几个优点。使用4分钟扫描,它在0.4微升样品上产生了几乎无噪声的U'1光谱;先前在自旋标记肌肉上使用传统矩形腔进行的U'1实验,导致信噪比低得无法接受。谐振器的高填充因子便于对这些极小的纤维束进行研究,并允许在低得多的入射微波功率水平下实现高微波场强度,从而大大提高了U'1实验中的信噪比。噪声水平的降低使得能够受益于U'1相对于V'2的其他优点,如更强的信号、更简单的线形和更简单的数据分析。对于这些肌肉纤维样品,U'1信号产生的灵敏度(信号/噪声/样品体积)比在传统腔中获得的V'2信号高100倍以上。U'1显示的另一个优点是,来自弱固定化探针(即相对于标记蛋白(肌球蛋白)具有纳秒旋转流动性的探针)的信号相对于强固定化探针被大大抑制。这减少了光谱分析的模糊性,并消除了先前在肌肉纤维和其他系统中所需的化学处理(例如使用K3Fe(CN)6)的必要性。通过增加微波功率和降低场调制频率,在U'1光谱中进一步抑制了这种弱固定化成分。