Suppr超能文献

鼠伤寒沙门氏菌的寡肽酶缺陷型突变体。

Oligopeptidase-deficient mutants of Salmonella typhimurium.

作者信息

Vimr E R, Green L, Miller C G

出版信息

J Bacteriol. 1983 Mar;153(3):1259-65. doi: 10.1128/jb.153.3.1259-1265.1983.

Abstract

An oligopeptidase that hydrolyzes N-acetyl-L-alanyl-L-alanyl-L-alanyl-L-alanine (AcAla4) has been identified in extracts of Salmonella typhimurium. Mutants lacking this activity have been isolated in dcp mutant strains by screening extracts of mutagenized clones for failure to hydrolyze AcAla4 or by screening colonies for inability to use AcAla4 as a nitrogen source. Double mutants (dcp optA) lacking both oligopeptidase A and dipeptidyl carboxypeptidase cannot use AcAla4 as a nitrogen source, although dcp+ optA and dcp optA+ strains grow on this peptide. The mutations responsible for the loss of activity map at a locus (optA) between asd (75 map units) and xylA (78 map units). Oligopeptidase A hydrolyzes certain N-blocked tetrapeptides, unblocked pentapeptides, and unblocked hexapeptides, usually but not always liberating the C-terminal tripeptide. These two activities seem to be responsible for the production of a large fraction of the dipeptides that accumulate during protein breakdown in a pepN pepA pepB pepD strain.

摘要

在鼠伤寒沙门氏菌提取物中已鉴定出一种能水解N-乙酰-L-丙氨酰-L-丙氨酰-L-丙氨酰-L-丙氨酸(AcAla4)的寡肽酶。通过筛选诱变克隆提取物中不能水解AcAla4的情况,或筛选不能利用AcAla4作为氮源的菌落,在dcp突变株中分离出了缺乏这种活性的突变体。缺乏寡肽酶A和二肽基羧肽酶的双突变体(dcp optA)不能利用AcAla4作为氮源,尽管dcp+ optA和dcp optA+菌株能在这种肽上生长。导致活性丧失的突变位于asd(75个图距单位)和xylA(78个图距单位)之间的一个位点(optA)。寡肽酶A能水解某些N-封闭的四肽、未封闭的五肽和未封闭的六肽,通常但并非总是释放出C末端三肽。这两种活性似乎是在pepN pepA pepB pepD菌株蛋白质分解过程中积累的大部分二肽产生的原因。

相似文献

1
Oligopeptidase-deficient mutants of Salmonella typhimurium.
J Bacteriol. 1983 Mar;153(3):1259-65. doi: 10.1128/jb.153.3.1259-1265.1983.
2
Dipeptidyl carboxypeptidase-deficient mutants of Salmonella typhimurium.
J Bacteriol. 1983 Mar;153(3):1252-8. doi: 10.1128/jb.153.3.1252-1258.1983.
3
Peptidase mutants of Salmonella typhimurium.
J Bacteriol. 1974 Oct;120(1):355-63. doi: 10.1128/jb.120.1.355-363.1974.
4
Isolation and characterization Salmonella typhimurium mutants lacking a tripeptidase (peptidase T).
J Bacteriol. 1983 May;154(2):763-71. doi: 10.1128/jb.154.2.763-771.1983.
5
Salmonella typhimurium peptidase active on carnosine.
J Bacteriol. 1978 May;134(2):361-74. doi: 10.1128/jb.134.2.361-374.1978.
6
Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium.
J Bacteriol. 2001 May;183(10):3089-97. doi: 10.1128/JB.183.10.3089-3097.2001.
7
Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.
J Bacteriol. 1984 Aug;159(2):453-9. doi: 10.1128/jb.159.2.453-459.1984.
8
Salmonella typhimurium mutants lacking protease II.
J Bacteriol. 1978 Aug;135(2):588-94. doi: 10.1128/jb.135.2.588-594.1978.
9
Acylaminoacid esterase mutants of Salmonella typhimurium.
Mol Gen Genet. 1978 Aug 4;164(1):57-62. doi: 10.1007/BF00267599.
10
Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium.
J Bacteriol. 1992 Mar;174(5):1631-40. doi: 10.1128/jb.174.5.1631-1640.1992.

引用本文的文献

1
Competence shut-off by intracellular pheromone degradation in salivarius streptococci.
PLoS Genet. 2022 May 25;18(5):e1010198. doi: 10.1371/journal.pgen.1010198. eCollection 2022 May.
3
YPTB3816 of Yersinia pseudotuberculosis strain IP32953 is a virulence-related metallo-oligopeptidase.
BMC Microbiol. 2016 Nov 25;16(1):282. doi: 10.1186/s12866-016-0900-7.
4
Identification and Characterization of an Oligopeptidase Gene Negatively Related to Biofilm Formation.
Front Microbiol. 2016 Sep 22;7:1497. doi: 10.3389/fmicb.2016.01497. eCollection 2016.
5
Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids.
ISRN Microbiol. 2013 Jan 15;2013:816713. doi: 10.1155/2013/816713. Print 2013.
6
Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources.
J Biol Chem. 2011 Nov 4;286(44):38115-38127. doi: 10.1074/jbc.M111.278572. Epub 2011 Sep 6.
7
Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264.
Org Lett. 2011 Jun 17;13(12):3048-51. doi: 10.1021/ol200922s. Epub 2011 May 26.
8
Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264.
Org Lett. 2010 Feb 19;12(4):716-9. doi: 10.1021/ol902751x.
10
Overexpression of the PepF oligopeptidase inhibits sporulation initiation in Bacillus subtilis.
J Bacteriol. 2002 Jan;184(1):43-50. doi: 10.1128/JB.184.1.43-50.2002.

本文引用的文献

1
Hfr formation directed by tn10.
Genetics. 1979 Apr;91(4):639-55. doi: 10.1093/genetics/91.4.639.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Peptide accumulation during growth of peptidase deficient mutants.
J Mol Biol. 1980 Oct 15;143(1):35-48. doi: 10.1016/0022-2836(80)90123-0.
4
Degradation of intracellular protein in Salmonella typhimurium peptidase mutants.
J Mol Biol. 1980 Oct 15;143(1):21-33. doi: 10.1016/0022-2836(80)90122-9.
5
Dipeptidyl carboxypeptidase-deficient mutants of Salmonella typhimurium.
J Bacteriol. 1983 Mar;153(3):1252-8. doi: 10.1128/jb.153.3.1252-1258.1983.
6
Size restriction on peptide utilization in Escherichia coli.
J Biol Chem. 1968 Dec 10;243(23):6291-9.
7
Peptidase mutants of Salmonella typhimurium.
J Bacteriol. 1974 Oct;120(1):355-63. doi: 10.1128/jb.120.1.355-363.1974.
8
Isolation and characterization of proline peptidase mutants of Salmonella typhimurium.
J Bacteriol. 1974 Oct;120(1):364-71. doi: 10.1128/jb.120.1.364-371.1974.
9
Gentic mapping of Salmonella typhimurium peptidase mutations.
J Bacteriol. 1975 Apr;122(1):171-6. doi: 10.1128/jb.122.1.171-176.1975.
10
Soluble tri- and dipeptidases in Escherichia coli K-12+.
Biochemistry. 1976 Jan 27;15(2):261-71. doi: 10.1021/bi00647a004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验