Suppr超能文献

Inhibition of pyruvate dehydrogenase multienzyme complex from Escherichia coli with a radiolabeled bifunctional arsenoxide: evidence for an essential histidine residue at the active site of lipoamide dehydrogenase.

作者信息

Adamson S R, Robinson J A, Stevenson K J

出版信息

Biochemistry. 1984 Mar 13;23(6):1269-74. doi: 10.1021/bi00301a039.

Abstract

Incubation of pyruvate dehydrogenase multienzyme complex (PD complex) from Escherichia coli with thiamin pyrophosphate, pyruvate, coenzyme A, Mg2+, and the radiolabeled bifunctional arsenoxide p-[(bromoacetyl)-amino]phenyl arsenoxide (BrCH214CONHPhAsO) led to the irreversible loss of lipoamide dehydrogenase (E3) activity. The mode of inactivation occurred by initial "anchoring" of the reagent via its -AsO group to reduced lipoyl residues on lipoate acetyltransferase (E2) (generated by substrates) followed by the delivery of the BrCH214CO- moiety into the active site of E3 where an irreversible alkylation ensued [Stevenson, K. J., Hale, G., & Perham, R. N. (1978) Biochemistry 17, 2189]. To account for nonspecific alkylations, not mediated by this delivery process, control experiments were conducted in which the radiolabeled bifunctional reagent was incubated with PD complex in the absence of substrates. E3 subunits were isolated from inhibited and control PD complexes by chromatography on hydroxylapatite in the presence of 8 M urea. Acid hydrolysis of the alkylated E3 and control E3 samples produced radiolabeled carboxymethylated amino acids that were identified and quantitated by high-voltage electrophoresis and amino acid/radiochemical analysis. The inhibited sample contained N3-(carboxymethyl)histidine and a small amount of S-(carboxymethyl)cysteine. These residues were not present in significant amounts in the controls. The loss of 81% of E3 activity correlated with the alkylation of about 0.7 residue of histidine and 0.1 residue of cysteine per mol of E3.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验