Nunnally R L, Stoddard J S, Helman S I, Kokko J P
Am J Physiol. 1983 Dec;245(6):F792-800. doi: 10.1152/ajprenal.1983.245.6.F792.
31P-nuclear magnetic resonance (NMR) studies were conducted on split epithelial sheets of frog skins to examine the effects of hypoxia and respiratory pH variations on various phosphate-containing intracellular substrates. Frog skins were split into epithelial sheets from which the supporting tissue was removed. Epithelial sheets in either phosphate-free Cl--Ringer or phosphate-free SO2-4-Ringer were bubbled at room temperature with 100% N2, 100% O2, 2% CO2-98% O2, 5% CO2-95% O2, and 15% CO2-85% O2. The results show that the intracellular pH (pHi) with Cl- -Ringer was 7.19 and with SO2-4-Ringer was 7.42 with extracellular pH of 7.52 when bubbled with 100% O2. These pHiS indicate that H+ concentration is at least an order of magnitude less than predicted from the previously measured Nernst potential. With exposure to increasing extracellular PCO2, there is a polynomial decrease in pHi. The pHi tended to be more alkaline in SO2-4 -Ringer, suggesting the presence of a HCO-3/Cl- exchange mechanism. The ATP concentration is critically and reversibly dependent on PO2. ADP concentrations were consistently low in well-oxygenated conditions. Variable but small quantities of phosphocreatine were detected. These studies demonstrate further the potential importance in utilizing NMR spectroscopy to examine coupling of biochemical substrates to epithelial transport processes.