Suppr超能文献

以葡萄糖为碳源的连续培养中铜绿假单胞菌生物表面活性剂的产生

Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source.

作者信息

Guerra-Santos L, Käppeli O, Fiechter A

出版信息

Appl Environ Microbiol. 1984 Aug;48(2):301-5. doi: 10.1128/aem.48.2.301-305.1984.

Abstract

Rsan-ver, a strain of Pseudomonas aeruginosa isolated at this department, was used for the development of a continuous process for biosurfactant production. The active compounds were identified as rhamnolipids. A final medium for production was designed in continuous culture by means of medium shifts, since the formation of surface-active compounds was decisively influenced by the composition and concentration of the medium components. In the presence of yeast extract, biosurfactant production was poor. For the nitrogen-source nitrate, which was superior to ammonium, an optimum carbon-to-nitrogen ratio of ca. 18 existed. The iron concentration needed to be minimized to 27.5 micrograms of FeSO4 X 7H2O per g of glucose. A carbon-to-phosphate ratio below 16 yielded the maximum production of rhamnolipids. The final productivity dilution rate diagram indicated that biosurfactant production was correlated to low growth rates (dilution rate below 0.15 h-1). With a medium containing 18.2 g of glucose liter-1, a biosurfactant concentration (expressed as rhamnolipids) of up to 1.5 g liter-1 was obtained in the cell-free culture liquid.

摘要

Rsan-ver,一种从本部门分离出的铜绿假单胞菌菌株,被用于开发一种连续生产生物表面活性剂的工艺。活性化合物被鉴定为鼠李糖脂。通过培养基切换在连续培养中设计了一种最终生产培养基,因为表面活性化合物的形成受到培养基成分的组成和浓度的决定性影响。在酵母提取物存在的情况下,生物表面活性剂产量较低。对于优于铵的氮源硝酸盐,存在约18的最佳碳氮比。铁浓度需要降至最低,每克葡萄糖为27.5微克的FeSO4·7H2O。碳磷比低于16时,鼠李糖脂产量最高。最终的生产力稀释率图表明,生物表面活性剂的生产与低生长速率(稀释率低于0.15 h-1)相关。在含有18.2克/升葡萄糖的培养基中,在无细胞培养液中获得了高达1.5克/升的生物表面活性剂浓度(以鼠李糖脂表示)。

相似文献

1
Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source.
Appl Environ Microbiol. 1984 Aug;48(2):301-5. doi: 10.1128/aem.48.2.301-305.1984.
2
Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.
World J Microbiol Biotechnol. 2013 Jun;29(6):1039-47. doi: 10.1007/s11274-013-1267-7. Epub 2013 Jan 30.
4
An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran.
Colloids Surf B Biointerfaces. 2009 Mar 1;69(2):183-93. doi: 10.1016/j.colsurfb.2008.11.018. Epub 2008 Nov 27.
5
Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
Biotechnol Prog. 2007 May-Jun;23(3):661-6. doi: 10.1021/bp0700152. Epub 2007 Apr 27.
6
Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples.
Prep Biochem Biotechnol. 2013;43(4):398-414. doi: 10.1080/10826068.2012.747966.
8
Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992.
Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):174-83. doi: 10.1016/j.colsurfb.2010.03.050. Epub 2010 Apr 8.
9
Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007 Jan;42(1):73-80. doi: 10.1080/10934520601015784.

引用本文的文献

1
Distinct microbial communities degrade cellulose diacetate bioplastics in the coastal ocean.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0165123. doi: 10.1128/aem.01651-23. Epub 2023 Dec 6.
3
Moving towards the enhancement of extracellular electron transfer in electrogens.
World J Microbiol Biotechnol. 2023 Mar 24;39(5):130. doi: 10.1007/s11274-023-03582-8.
4
The power of light: Impact on the performance of biocontrol agents under minimal nutrient conditions.
Front Microbiol. 2023 Feb 2;14:1087639. doi: 10.3389/fmicb.2023.1087639. eCollection 2023.
5
Evolution and regulation of microbial secondary metabolism.
Elife. 2022 Nov 21;11:e76119. doi: 10.7554/eLife.76119.
7
Recent advancements in the production of rhamnolipid biosurfactants by .
RSC Adv. 2020 Sep 14;10(56):34014-34032. doi: 10.1039/d0ra04953k. eCollection 2020 Sep 10.
8
Dining in Blue Light Impairs the Appetite of Some Leaf Epiphytes.
Front Microbiol. 2021 Oct 18;12:725021. doi: 10.3389/fmicb.2021.725021. eCollection 2021.
9
Foraging Signals Promote Swarming in Starving Pseudomonas aeruginosa.
mBio. 2021 Oct 26;12(5):e0203321. doi: 10.1128/mBio.02033-21. Epub 2021 Oct 5.
10
Production and potential biotechnological applications of microbial surfactants: An overview.
Saudi J Biol Sci. 2021 Jan;28(1):669-679. doi: 10.1016/j.sjbs.2020.10.058. Epub 2020 Nov 4.

本文引用的文献

1
Production of a Biosurfactant from Torulopsis bombicola.
Appl Environ Microbiol. 1984 Jan;47(1):173-6. doi: 10.1128/aem.47.1.173-176.1984.
2
Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions.
Appl Environ Microbiol. 1981 Sep;42(3):408-12. doi: 10.1128/aem.42.3.408-412.1981.
4
Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions).
J Antibiot (Tokyo). 1971 Dec;24(12):855-9. doi: 10.7164/antibiotics.24.855.
5
Structure of a rhamnolipid from Pseudomonas aeruginosa.
Arch Biochem Biophys. 1965 Aug;111(2):415-21. doi: 10.1016/0003-9861(65)90204-3.
6
Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa.
J Bacteriol. 1978 May;134(2):418-22. doi: 10.1128/jb.134.2.418-422.1978.
7
Exopolysaccharide production by Pseudomonas NCIB11264 grown in continuous culture.
J Gen Microbiol. 1978 Jan;104(1):47-57. doi: 10.1099/00221287-104-1-47.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验