Schnellmann R G, Volp R F, Putnam C W, Sipes I G
Biochem Pharmacol. 1984 Nov 1;33(21):3503-9. doi: 10.1016/0006-2952(84)90127-8.
Since chlorine placement and the degree of chlorination of the biphenyl nucleus play an important role in the metabolism and ultimate elimination of polychlorinated biphenyls (PCBs), we have studied the metabolism of 4,4'-dichlorobiphenyl (4-DCB) by human hepatic microsomes. This low molecular weight PCB congener is substituted at the preferred site of metabolism (para-position). 4-DCB was metabolized by human microsomes with a Km of 0.43 microM and a Vmax of 1.2 pmoles/mg microsomal protein/min. Six metabolites were identified: 4,4'-dichloro-3,3'-biphenyldiol, 4'-chloro-3-biphenylol, 4'-chloro-4-biphenylol, 4,4'-dichloro-2-biphenylol, 4,4'-dichloro-3-biphenylol (most abundant), and 3,4'-dichloro-4-biphenylol. [14C]-4-DCB equivalents were found to covalently bind to microsomal protein. Addition of a 1 mM concentration of reduced glutathione decreased the degree of covalent binding. These data suggest that human microsomes metabolize this PCB through an arene oxide and that an "NIH shift" occurs. When UDPGA was added to the incubation, human microsomal glucuronosyltransferase catalyzed the formation of the glucuronide of the major metabolite, 4,4'-dichloro-3-biphenylol. These and previous in vitro results show that the biotransformation of PCBs by humans is governed by the same principles established for the in vivo biotransformation of PCBs by the rat, mouse and monkey. That is, PCBs without two adjacent unsubstituted carbon atoms are poorly metabolized and that an unsubstituted para-position facilitates metabolism.
由于氯原子在联苯核上的位置以及联苯核的氯化程度在多氯联苯(PCBs)的代谢和最终消除过程中起着重要作用,我们研究了人肝微粒体对4,4'-二氯联苯(4-DCB)的代谢情况。这种低分子量的多氯联苯同系物在代谢的优先位点(对位)被取代。4-DCB被人微粒体代谢,其Km为0.43微摩尔,Vmax为1.2皮摩尔/毫克微粒体蛋白/分钟。鉴定出了六种代谢产物:4,4'-二氯-3,3'-联苯二醇、4'-氯-3-联苯酚、4'-氯-4-联苯酚、4,4'-二氯-2-联苯酚、4,4'-二氯-3-联苯酚(含量最高)和3,4'-二氯-4-联苯酚。发现[14C]-4-DCB等价物与微粒体蛋白共价结合。添加1毫摩尔浓度的还原型谷胱甘肽可降低共价结合程度。这些数据表明,人微粒体通过芳烃氧化物代谢这种多氯联苯,并且发生了“NIH迁移”。当向孵育体系中添加UDPGA时,人微粒体葡萄糖醛酸转移酶催化主要代谢产物4,4'-二氯-3-联苯酚的葡萄糖醛酸苷的形成。这些以及之前的体外研究结果表明,人类对多氯联苯的生物转化遵循与大鼠、小鼠和猴子体内多氯联苯生物转化相同的原则。也就是说,没有两个相邻未取代碳原子的多氯联苯代谢较差,并且未取代的对位有利于代谢。