Suppr超能文献

Phosphorus-31 nuclear relaxation rate studies of the nucleotides on phosphoenolpyruvate carboxykinase.

作者信息

Lee M H, Nowak T

出版信息

Biochemistry. 1984 Dec 18;23(26):6506-13. doi: 10.1021/bi00321a036.

Abstract

The interactions of nucleotide substrates with the enzyme phosphoenolpyruvate carboxykinase and its Mn2+ complex were investigated by several methods. Direct binding shows the formation of stoichiometric complexes. The presence of Mn2+ increases the affinity of the enzyme for nucleotide. A higher affinity for GTP (Kd less than 2 microM) than for GDP (Kd = 15 microM) was determined. Solvent proton relaxation rate studies indicate no substantial difference in titration curves for free nucleotide or for Mg-nucleotide to the enzyme-Mn complex. The effect of Mn2+ on the 31P relaxation rates of IDP and of ITP in the binary Mn-nucleotide complex indicates the formation of direct coordination complexes. The distances of the alpha- and beta-31P of IDP to Mn2+ are identical (3.5 A). The Mn2+ distance to the beta- and gamma-31P of ITP is also identical (3.7 A) and is 0.2 A further from the alpha-phosphorus. In the presence of P-enolpyruvate carboxykinase, the effect of Mn2+ on the 31P relaxation rates was measured at 40.5 MHz and at 121.5 MHz. The dipolar correlation time was calculated to be 0.6-5.4 ns, depending upon assumptions made. The Mn2+ to phosphorus distances indicate the nucleotide substrates form a second sphere complex to the bound Mn2+. From 1/T2 measurements, electron delocalization from Mn2+ to the phosphorus atoms is indicated; this effect occurs although direct coordination does not take place. The exchange rate of GTP from the enzyme-Mn complex (koff = 4 X 10(4) s-1) is rapid compared to kcat with a lower energy of activation (9.2 kcal/mol) than for catalytic turnover.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验