Suppr超能文献

高细胞内pH值可逆地阻止鱿鱼轴突中的门控电荷固定。

High intracellular pH reversibly prevents gating-charge immobilization in squid axons.

作者信息

Wanke E, Testa P L, Prestipino G, Carbone E

出版信息

Biophys J. 1983 Nov;44(2):281-4. doi: 10.1016/S0006-3495(83)84300-8.

Abstract

Squid giant axons were used to study the reversible effects of high intracellular pH (pHi) on gating currents. Under depolarization, when Na channels are activated, internal solutions buffered at high pHi (10.2) affect considerably the time course of gating charge associated with channel closing, QOFF, with almost no alteration of QON records. In particular, at pHi 10.2 the charge corresponding to the fast phase of IgOFF, measured after long depolarizing pulses (7.7 ms), was consistently larger than that recorded at physiological pHi (7.2). This suggests that high pH prevents immobilization of gating charges induced by Na inactivation. In this respect, the present data agree reasonably well with previous observations, which show that pHi greater than 7.2 reversibly removes the fast Na inactivation with little effects on activation kinetics (Carbone, E., P. L. Testa, and E. Wanke, 1981, Biophys. J., 35:393-413; Brodwick, M.S., and D. C. Eaton, 1978, Science [Wash. DC], 200:1494-1496). Unexpectedly, high pH increases the amount of charge associated with the slow phase of IgOFF. In our opinion, this might be the result of either an increment of the net charge produced by the exposure to high pHi or that gating charges that return to the closed state might experience a larger fraction of the potential drop across the membrane (Neumcke, B., W. Schwarz, and R. Stampfli, 1980, Biophys. J., 31:325-332).

摘要

乌贼巨大轴突被用于研究高细胞内pH值(pHi)对门控电流的可逆影响。在去极化时,当钠通道被激活,用高pHi(10.2)缓冲的内部溶液会显著影响与通道关闭相关的门控电荷的时间进程,即QOFF,而对QON记录几乎没有改变。特别是,在pHi为10.2时,在长去极化脉冲(7.7毫秒)后测量的与IgOFF快速相对应的电荷始终大于在生理pHi(7.2)时记录的电荷。这表明高pH值可防止由钠失活诱导的门控电荷固定。在这方面,目前的数据与先前的观察结果相当吻合,先前的观察表明pHi大于7.2可可逆地消除快速钠失活,而对激活动力学影响很小(卡尔博内,E.,P.L. 泰斯塔,和E. 万克,1981年,《生物物理杂志》,35:393 - 413;布罗德威克,M.S.,和D.C. 伊顿,1978年,《科学》[华盛顿特区],200:1494 - 1496)。出乎意料的是,高pH值增加了与IgOFF缓慢相相关的电荷量。我们认为,这可能是由于暴露于高pHi产生的净电荷增加,或者是回到关闭状态的门控电荷可能经历了跨膜电位降的更大比例(诺姆克,B.,W. 施瓦茨,和R. 施坦普利,1980年,《生物物理杂志》,31:325 - 332)。

相似文献

1
High intracellular pH reversibly prevents gating-charge immobilization in squid axons.
Biophys J. 1983 Nov;44(2):281-4. doi: 10.1016/S0006-3495(83)84300-8.
2
Batrachotoxin uncouples gating charge immobilization from fast Na inactivation in squid giant axons.
Biophys J. 1988 Oct;54(4):719-30. doi: 10.1016/S0006-3495(88)83007-8.
3
The effect of temperature on the asymmetrical charge movement in squid giant axons.
J Physiol. 1979 Apr;289:479-500. doi: 10.1113/jphysiol.1979.sp012748.
4
Modeling squid axon Na channel by a nucleation and growth kinetic mechanism.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):100-109. doi: 10.1016/j.bbamem.2018.08.009. Epub 2018 Aug 23.
5
QX-314 restores gating charge immobilization abolished by chloramine-T treatment in squid giant axons.
Biophys J. 1989 Aug;56(2):421-7. doi: 10.1016/S0006-3495(89)82688-8.
6
Immobilization of intramembrane charge in Myxicola giant axons.
J Physiol. 1979 Jan;286:157-71. doi: 10.1113/jphysiol.1979.sp012611.
7
Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel.
Biophys J. 2001 Nov;81(5):2614-27. doi: 10.1016/S0006-3495(01)75905-X.
8
The effect of zinc on the late displacement current in squid giant axons.
J Physiol. 1976 Jan;254(3):787-801. doi: 10.1113/jphysiol.1976.sp011259.
10
Temperature dependence of bistability in squid giant axons with alkaline intracellular pH.
J Membr Biol. 2002 Jun 1;187(3):213-23. doi: 10.1007/s00232-001-0165-3.

引用本文的文献

1
Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel.
Biophys J. 2013 Jul 2;105(1):101-7. doi: 10.1016/j.bpj.2013.04.022.
2
Changes in human sensory axonal excitability induced by focal nerve compression.
J Physiol. 2010 May 15;588(Pt 10):1737-45. doi: 10.1113/jphysiol.2010.188169. Epub 2010 Mar 29.
3
Sodium channel function and the excitability of human cutaneous afferents during ischaemia.
J Physiol. 2002 Jan 15;538(Pt 2):435-46. doi: 10.1113/jphysiol.2001.012478.
6
Gating charge transfer due to fixed ionizable sites.
Eur Biophys J. 1990;18(2):135-7. doi: 10.1007/BF00183273.

本文引用的文献

1
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
2
Increased charge displacement in the membrane of myelinated nerve at reduced extracellular pH.
Biophys J. 1980 Sep;31(3):325-31. doi: 10.1016/S0006-3495(80)85062-4.
3
Removal of Na+ channels in squid giant axons by perfusion with trypsin.
Biochim Biophys Acta. 1982 Dec 8;693(1):188-94. doi: 10.1016/0005-2736(82)90486-2.
4
Gallamine triethiodide-induced modifications of sodium conductance in Myxicola giant axons.
J Physiol. 1982 Feb;323:157-71. doi: 10.1113/jphysiol.1982.sp014066.
5
Intracellular pH and ionic channels in the Loligo vulgaris giant axon.
Biophys J. 1981 Aug;35(2):393-413. doi: 10.1016/S0006-3495(81)84798-4.
6
Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane.
Prog Biophys Mol Biol. 1981;37(2):49-89. doi: 10.1016/0079-6107(82)90020-7.
10
Currents related to movement of the gating particles of the sodium channels.
Nature. 1973 Apr 13;242(5398):459-61. doi: 10.1038/242459a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验