Moreland D E, Novitzky W P
Chem Biol Interact. 1984 Feb;48(2):153-68. doi: 10.1016/0009-2797(84)90117-0.
The effects of DDT, some of its analogs, and selected cyclodiene insecticides on isolated spinach (Spinacea oleracea L.) thylakoids were identified, characterized, and compared to responses induced by selected herbicides. Except for endrin, the insecticides inhibited light-induced electron transport, altered chlorophyll fluorescence transients, and competitively displaced [14C]atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], a known photosystem II inhibitor, from the membranes. The insecticides appeared to act at, or near B, the secondary electron acceptor of photo-system II. Binding of DDT and dieldrin was estimated at 900 and 2200 molecules, respectively, per photosynthetic unit (490 chlorophyll molecules). The insecticides also inhibited valinomycin-induced swelling of the thylakoid membrane. Whereas inhibition of electron transport can be attributed to interaction by the insecticides with a proteinaceous component of the thylakoid membrane, interference with the action of valinomycin may involve interaction with lipoidal constituents of the membrane.