Suppr超能文献

A structural model of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata deduced from density measurements at different osmotic pressures.

作者信息

Breer H, Morris S J, Whittaker V P

出版信息

Eur J Biochem. 1978 Jul 3;87(3):453-8. doi: 10.1111/j.1432-1033.1978.tb12395.x.

Abstract

Density measurements made on cholinergic synaptic vesicles from the electric organs of Torpedo marmorata at different osmotic pressures are consistent with the following structural model of the vesicle. The particle behaves like a sphere 80-100 nm in diameter bounded by a semi-permeable membrane. The bulk of its soluble constituents are in true solution at physiological osmolalities. The limiting membrane is approximately 4-5 nm thick, suggesting that it contains large areas of phospholipid bilayer exposed to its bathing medium. The limiting membrane takes up about 26% (v/v) of the particle, a further 34% (v/v) of which is osmotically active water and 31% (v/v) hydrated core material at 800 mosmol/1. The buoyant density of the membrane is 1.132 g . cm-3. The density of the hydrated core material is approximately 1.05 g . cm-3. The membrane is selectively permeable to small molecules when subjected to hypo-osmotic stress. It is proposed that this occurs by the formation of small transient pores in the lipid bilayer of the membrane, which are induced by stretching caused by the osmotic pressure change.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验