Suppr超能文献

鱿鱼轴突中的阳离子偶联氯离子内流。钾的作用及转运过程的化学计量学。

Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process.

作者信息

Russell J M

出版信息

J Gen Physiol. 1983 Jun;81(6):909-25. doi: 10.1085/jgp.81.6.909.

Abstract

Evidence is presented showing that the Cl- uptake process in the squid giant axon is tightly coupled not only to Na+ uptake but also to K+ uptake. Thus, removal of external K+ causes both Cl- and Na+ influxes to be reduced, particularly when [Cl-]i is low, that is, under conditions previously shown to be optimal for Cl-/Na+-coupled influx. In addition, there exists a ouabain-insensitive K+ influx, which depends on the presence of external Cl- and Na+, is inversely proportional to [Cl-]i, and is blocked by furosemide/bumetanide. Finally, this ouabain-insensitive K+ influx appears to require the presence of cellular ATP. The stoichiometry of the coupled transport process was measured using a double-labeling technique combining in the same axon either 36Cl and 42K or 22Na and 42K. The stoichiometry of the flux changes occurring in response either to varying [Cl-]i between 150 and 0 mM or to treatment with 0.3 mM furosemide is, in both cases, approximately 3:2:1 (Cl-/Na+/K+). Although these fluxes require ATP, they are not inhibited by 3 mM vanadate. In addition, treatment with DIDS has no effect on the fluxes.

摘要

有证据表明,枪乌贼巨大轴突中的氯离子摄取过程不仅与钠离子摄取紧密偶联,还与钾离子摄取紧密偶联。因此,去除细胞外钾离子会导致氯离子和钠离子内流减少,特别是当细胞内氯离子浓度较低时,即在先前显示对氯离子/钠离子偶联内流最有利的条件下。此外,存在一种哇巴因不敏感的钾离子内流,它依赖于细胞外氯离子和钠离子的存在,与细胞内氯离子浓度成反比,并被呋塞米/布美他尼阻断。最后,这种哇巴因不敏感的钾离子内流似乎需要细胞内ATP的存在。使用双标记技术测量偶联转运过程的化学计量,该技术在同一轴突中同时结合36Cl和42K或22Na和42K。在两种情况下,响应于细胞内氯离子浓度在150 mM至0 mM之间变化或用0.3 mM呋塞米处理而发生的通量变化的化学计量约为3:2:1(Cl-/Na+/K+)。尽管这些通量需要ATP,但它们不受3 mM钒酸盐的抑制。此外,用DIDS处理对通量没有影响。

相似文献

2
Chloride and sodium influx: a coupled uptake mechanism in the squid giant axon.
J Gen Physiol. 1979 Jun;73(6):801-18. doi: 10.1085/jgp.73.6.801.
3
Coupled Na/K/Cl efflux. "Reverse" unidirectional fluxes in squid giant axons.
J Gen Physiol. 1987 May;89(5):669-86. doi: 10.1085/jgp.89.5.669.
4
Vanadate and fluoride effects on Na+-K+-Cl- cotransport in squid giant axon.
Am J Physiol. 1988 Apr;254(4 Pt 1):C582-6. doi: 10.1152/ajpcell.1988.254.4.C582.
5
Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter.
J Gen Physiol. 1993 Jun;101(6):889-908. doi: 10.1085/jgp.101.6.889.
6
Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent.
Am J Physiol. 1990 Apr;258(4 Pt 1):C749-53. doi: 10.1152/ajpcell.1990.258.4.C749.
7
A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid.
J Physiol. 1975 Oct;252(1):79-96. doi: 10.1113/jphysiol.1975.sp011135.
8
Extracellular Mg(2+)-dependent Na+, K+, and Cl- efflux in squid giant axons.
Am J Physiol. 1994 Apr;266(4 Pt 1):C1112-7. doi: 10.1152/ajpcell.1994.266.4.C1112.
9
Role of the Na+/K+/Cl- transporter in the positive inotropic effect of ouabain in cardiac myocytes.
J Cell Physiol. 1990 Oct;145(1):24-9. doi: 10.1002/jcp.1041450105.

引用本文的文献

1
Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development.
Cereb Cortex. 2023 May 9;33(10):5906-5923. doi: 10.1093/cercor/bhac470.
2
WNK4 kinase: from structure to physiology.
Am J Physiol Renal Physiol. 2021 Mar 1;320(3):F378-F403. doi: 10.1152/ajprenal.00634.2020. Epub 2021 Jan 25.
3
Molecular characteristics and physiological roles of Na -K -Cl cotransporter 2.
J Cell Physiol. 2021 Mar;236(3):1712-1729. doi: 10.1002/jcp.29997. Epub 2020 Aug 10.
4
Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke.
Stroke. 2015 Jan;46(1):237-44. doi: 10.1161/STROKEAHA.114.007445. Epub 2014 Dec 4.
5
Physiology and pathophysiology of SLC12A1/2 transporters.
Pflugers Arch. 2014 Jan;466(1):91-105. doi: 10.1007/s00424-013-1370-5. Epub 2013 Oct 6.
6
Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes.
Am J Physiol Cell Physiol. 2011 Nov;301(5):C1074-85. doi: 10.1152/ajpcell.00131.2011. Epub 2011 Jul 20.
7
Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family.
Pflugers Arch. 2004 Feb;447(5):580-93. doi: 10.1007/s00424-003-1066-3. Epub 2003 May 9.
8
The Na/K pump, Cl ion, and osmotic stabilization of cells.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):6257-62. doi: 10.1073/pnas.0931278100. Epub 2003 May 1.
9
Loop diuretics inhibit detubulation and vacuolation in amphibian muscle fibres exposed to osmotic shock.
J Muscle Res Cell Motil. 2000 Jan;21(1):79-90. doi: 10.1023/a:1005618720122.
10
The Na-K-Cl cotransporters.
J Bioenerg Biomembr. 1998 Apr;30(2):161-72. doi: 10.1023/a:1020521308985.

本文引用的文献

1
CHLORIDE IN THE SQUID GIANT AXON.
J Physiol. 1963 Dec;169(3):690-705. doi: 10.1113/jphysiol.1963.sp007289.
2
Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells.
Biochim Biophys Acta. 1980 Aug 4;600(2):432-47. doi: 10.1016/0005-2736(80)90446-0.
4
Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells.
Biochim Biophys Acta. 1981 Sep 7;646(3):389-98. doi: 10.1016/0005-2736(81)90307-2.
5
Na+-K+-Cl- co-transport in the intestine of a marine teleost.
Nature. 1982 Nov 25;300(5890):351-3. doi: 10.1038/300351a0.
7
Chloride-activated passive potassium transport in human erythrocytes.
Proc Natl Acad Sci U S A. 1980 Mar;77(3):1711-5. doi: 10.1073/pnas.77.3.1711.
9
NaCl entry mechanisms in the luminal membrane of the renal tubule.
Am J Physiol. 1982 Jun;242(6):F561-74. doi: 10.1152/ajprenal.1982.242.6.F561.
10
Anion transport mechanisms in neurons.
Ann N Y Acad Sci. 1980;341:510-23. doi: 10.1111/j.1749-6632.1980.tb47195.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验